EEE356 - Data Analytics (R) Week 1: Course Introduction and Scope #### ADANA ALPARSLAN TÜRKEŞ SCIENCE AND TECHNOLOGY UNIVERSITY Dr Kasım Zor Department of Electrical and Electronic Engineering Spring 2021 - 1 Course Introduction and Scope - 2 Introduction to Data Analytics - 3 Introduction to R Programming Language - 4 Data Structures - 5 Control Structures - 6 Functions - 7 Data Wrangling Part 1 - 8 Midterm Examination - 9 Data Wrangling Part 2 - 10 Data Visualisation - **11** Exploratory Data Analysis - 12 Approaches to Missing Data - 13 Case Study - 14 Final Examination - 1 Course Introduction and Scope - 2 Introduction to Data Analytics - 3 Introduction to R Programming Language - 4 Data Structures - 5 Control Structures - 6 Functions - 7 Data Wrangling Part 1 - 8 Midterm Examination - 9 Data Wrangling Part 2 - 10 Data Visualisation - 11 Exploratory Data Analysis - 12 Approaches to Missing Data - 13 Case Study - 14 Final Examination # Course Instructor Dr Kasım Zor Electrical and Electronic Engineer, PhD #### Research Interests Electrical Energy and Power Systems, Electric Load Forecasting, Data Analytics, Artificial Intelligence, and Renewable Energy # Contact Information - Office: Room 210, West Wing, Prefab Building - E-mail: kzor@atu.edu.tr - Web: www.kasimzor.com.tr # Laboratory Assistant Mr. Emre Yorat Electrical and Electronic Engineer, Research Assistant #### Research Interests Computer Programming, Power Electronics, and Electric Machinery #### Contact Information - Office: Room 128, North Wing, Prefab Building - E-mail: eyorat@atu.edu.tr # Course Information | Course Title Code | Semester | T+L (Hours) | Credits | ECTS | |-------------------------|----------|-------------|---------|------| | Data Analytics EEE356 | 6 | 3+2 | 4 | 6 | Table 1: Table of Course Information ■ Prerequisites: None ■ Language: English ■ Level: Bachelor ■ Type: Elective # Course Assessment and Evaluation | Assessment Type | Quantity | Weight | |---------------------|----------|--------| | Midterm Examination | 1 | 40% | | Final Examination | 1 | 60% | Table 2: Table of Course Assessment and Evaluation | | Course Type | Allowed Rate | Allowed Hours | |---------------|-------------|--------------|---------------| | Absentee Rate | Main Course | 30% | 14 | | | Laboratory | | 6 | Table 3: Table of Absentee Rate # Laboratory Schedule | | Lab Contents | |-----|--| | W1 | Introduction to the Laboratory | | W2 | Introduction to R Programming Language | | W3 | Basics of R Programming Language | | W4 | Data Structures | | W5 | Control Structures | | W6 | Functions | | W7 | Data Wrangling - Part 1 | | W8 | Data Wrangling - Part 2 | | W10 | Data Wrangling - Part 3 | | W11 | Data Visualisation - Part 1 | | W12 | Data Visualisation - Part 2 | | W13 | Exploratory Data Analysis | | W14 | Approaches to Missing Data | | W15 | Interactive Lab for FAQ by Students | # Objectives and Learning Outcomes This course aims to gain students insight and required skills related to data analytics containing R Programming, data wrangling, data visualisation, exploratory data analysis, and approaches to missing data. - Gaining insight about the term 'Data Analytics' - Ability to use R programming language - Possessing skills related to data analytics containing - Data Wrangling, - Data Visualisation, - Exploratory Data Analysis, - Approaches to Missing Data. # Recommended Sources # Textbooks [1, 2, 3, 4] # Additional Resources [5, 6, 7] - 1 Course Introduction and Scope - 2 Introduction to Data Analytics - 3 Introduction to R Programming Language - 4 Data Structures - 5 Control Structures - 6 Functions - 7 Data Wrangling Part 1 - 8 Midterm Examination - 9 Data Wrangling Part 2 - 10 Data Visualisation - 11 Exploratory Data Analysis - 12 Approaches to Missing Data - 13 Case Study - 14 Final Examination # Course Contents – Week 2 # Introduction to Data Analytics [8] | | Descriptive | Predictive | Prescriptive | | |--|---|---|--|--| | | What HAS happened? | What COULD happen? | What SHOULD happen? | | | What the user needs to DO | Increase asset reliability Reduce labor and inventory costs | Predict infrastructure failures Forecast facilities space demands | Increase asset utilization Optimize resource schedules | | | What the user needs to KNOW | The number and types of asset failures Why maintenance costs are high The value of the materials inventory | How to anticipate failures for specific asset types When to consolidate underutilized facilities How to determine costs to improve service levels | How to increase asset production Where to optimally route service technicians Which strategic facilities plan provides the highest long-term utilization | | | How
analytics
gets
ANSWERS | Standard reporting - What happened? Query/drill down - Where exactly is the problem? Ad hoc reporting - How many, how often, where? | Predictive modeling - What will happen next? Forecasting - What if these trends continue? Simulation - What could happen? Alerts - What actions are needed? | Optimization - What is the best possible outcome? Random variable optimization - What is the best outcome given the variability in specified areas? | | | What
makes this
analysis
POSSIBLE | Alerts, reports, dashboards,
business intelligence | Predictive models, forecasts,
statistical analysis, scoring | Business rules, organization
models, comparisons, optimization | | | | | | | | - 1 Course Introduction and Scope - 2 Introduction to Data Analytic - 3 Introduction to R Programming Language - 4 Data Structures - 5 Control Structures - 6 Functions - 7 Data Wrangling Part 1 - 8 Midterm Examination - 9 Data Wrangling Part 2 - 10 Data Vigualization - Data Visualisation - Exploratory Data Analysis - Approaches to Missing Data - 13 Case Study - 14 Final Examination ### Course Contents – Week 3 Introduction to R Programming Language [9] - 1 Course Introduction and Scope - 2 Introduction to Data Analytics - 3 Introduction to R Programming Language - 4 Data Structures - 5 Control Structures - 6 Functions - 7 Data Wrangling Part 1 - 8 Midterm Examination - 9 Data Wrangling Part 2 - 10 Data Vigualisation - Data Visualisation - Exploratory Data Analysis - Approaches to Missing Data - 13 Case Study - 14 Final Examination # Course Contents – Week 4 #### Data Structures Figure 1: Common Data Structures in R [10] - 1 Course Introduction and Scope - 2 Introduction to Data Analytics - 3 Introduction to R Programming Language - 4 Data Structures - 5 Control Structures - 6 Functions - 7 Data Wrangling Part 1 - 8 Midterm Examination - 9 Data Wrangling Part 2 - 10 Data Visualisation - 11 Exploratory Data Analysis - 12 Approaches to Missing Data - 13 Case Study - 14 Final Examination ### Course Contents – Week 5 #### Control Structures Figure 2: Illustration of Control Structures in R - 1 Course Introduction and Scope - 2 Introduction to Data Analytics - 3 Introduction to R Programming Language - 4 Data Structures - 5 Control Structures - 6 Functions - **7** Data Wrangling Part 1 - 8 Midterm Examination - 9 Data Wrangling Part 2 - 10 Data Visualisation - 11 Exploratory Data Analysis - 12 Approaches to Missing Data - 13 Case Study - 14 Final Examination # Course Contents – Week 6 #### **Functions** ``` Functions function name <- function(var){</pre> Do something return(new variable) Example square <- function(x){</pre> squared <- x*x return(squared) ``` Function Components Function Body Return Value Figure 4: Function Components in R **Function Name** - 1 Course Introduction and Scope - 2 Introduction to Data Analytic - 3 Introduction to R Programming Language - 4 Data Structures - 5 Control Structures - 6 Functions - 7 Data Wrangling Part 1 - 8 Midterm Examination - 9 Data Wrangling Part 2 - 10 Data Visualisation - 11 Exploratory Data Analysis - 12 Approaches to Missing Data - 13 Case Study - 14 Final Examination # Course Contents – Week 7 and 8 #### Data Wrangling Data wrangling, is the process of importing, cleaning, and transforming raw data into actionable information for analysis [12]. Figure 5: Demonstration of Data Wrangling Process [1] - 1 Course Introduction and Scope - 2 Introduction to Data Analytics - 3 Introduction to R Programming Language - 4 Data Structures - 5 Control Structures - 6 Functions - 7 Data Wrangling Part 1 - 8 Midterm Examination - 9 Data Wrangling Part 2 - 10 Data Visualisation - 11 Exploratory Data Analysis - 12 Approaches to Missing Data - 13 Case Study - 14 Final Examination # Course Contents – Week 9 Midterm Examination (Online) An example of midterm exam and its solutions will be shared with students before the exam. | # | Difficulty | Minutes | Pts | Scope | |----|------------|---------|-----|-------| | Q1 | Very Easy | 5 | 10 | W1-W3 | | Q2 | Easy | 10 | 15 | W1-W4 | | Q3 | Moderate | 30 | 25 | W5-W7 | | Q4 | Hard | 45 | 50 | W5-W8 | | | Total | 90 | 100 | W1-W8 | Table 4: Assessment of Midterm Examination - 1 Course Introduction and Scope - 2 Introduction to Data Analytics - 3 Introduction to R Programming Language - 4 Data Structures - 5 Control Structures - 6 Functions - 7 Data Wrangling Part 1 - 8 Midterm Examination - 9 Data Wrangling Part 2 - **IO** Data Visualisation - 11 Exploratory Data Analysis - 12 Approaches to Missing Data - 13 Case Study - 14 Final Examination ### Course Contents – Week 10 Tidyverse Packages for Data Wrangling dplyr is a grammar of data manipulation, while the goal of tidyr is to help you create tidy data [13, 14]. Figure 6: dplyr Package [15] Figure 7: tidyr Package [16] - 1 Course Introduction and Scope - 2 Introduction to Data Analytics - 3 Introduction to R Programming Language - 4 Data Structures - 5 Control Structures - 6 Functions - 7 Data Wrangling Part 1 - 8 Midterm Examination - 9 Data Wrangling Part 2 - 10 Data Visualisation - 11 Exploratory Data Analysis - 12 Approaches to Missing Data - 13 Case Study - 14 Final Examination ### Course Contents – Week 11 and 12 Tidyverse Package for Data Visualisation Via ggplot2, any graph can be built from the same components: a data set, a coordinate system, and geoms-visual marks that represent data points [17]. Figure 8: ggplot2 Package [17] - 1 Course Introduction and Scope - 2 Introduction to Data Analytic - 3 Introduction to R Programming Language - 4 Data Structures - 5 Control Structures - 6 Functions - **7** Data Wrangling Part 1 - 8 Midterm Examination - 9 Data Wrangling Part 2 - 10 Data Visualisation - 11 Exploratory Data Analysis - 12 Approaches to Missing Data - 13 Case Study - 14 Final Examination # Course Contents – Week 13 ### Exploratory Data Analysis (EDA) Figure 9: An Output of EDA [18] - 1 Course Introduction and Scope - 2 Introduction to Data Analytics - 3 Introduction to R Programming Language - 4 Data Structures - 5 Control Structures - 6 Functions - 7 Data Wrangling Part 1 - 8 Midterm Examination - 9 Data Wrangling Part 2 - 10 Data Visualisation - 11 Exploratory Data Analysis - 12 Approaches to Missing Data - 13 Case Study - 14 Final Examination # Course Contents – Week 14 #### Approaches to Missing Data Figure 10: An Example of Missing Data Imputation [18] W1 W2 W3 W4 W5 W6 W7-8 W9 W10 W11-12 W13 W14 W15 W16 Reference 00000000 00 00 00 00 00 00 00 00 00 - 1 Course Introduction and Scope - 2 Introduction to Data Analytics - 3 Introduction to R Programming Language - 4 Data Structures - 5 Control Structures - 6 Functions - 7 Data Wrangling Part 1 - 8 Midterm Examination - 9 Data Wrangling Part 2 - 10 Data Visualisation - 11 Exploratory Data Analysis - 12 Approaches to Missing Data - 13 Case Study - 14 Final Examination #### Course Contents – Week 15 Case Study: Correlation Map (Blank p-values < 0.01) [19] - 1 Course Introduction and Scope - 2 Introduction to Data Analytics - 3 Introduction to R Programming Language - 4 Data Structures - 5 Control Structures - 6 Functions - 7 Data Wrangling Part 1 - 8 Midterm Examination - 9 Data Wrangling Part 2 - 10 Data Visualisation - 11 Exploratory Data Analysis - 12 Approaches to Missing Data - 3 Case Study - 14 Final Examination W1 W2 W3 W4 W5 W6 W7-8 W9 W10 W11-12 W13 W14 W15 W16 References 0000000 00 00 00 00 00 00 00 # Course Contents – Week 16 Final Examination (Computer-Based at Lab) A computer-based applied exam will be carried out for the final exam. - A CSV file containing a data set will be provided. - The followings will be applied to the data set: - Data wrangling including missing data imputation, - Data visualisation, - Exploratory data analysis, - Case study (similar to Week 15). - Students will act in accordance with the instructions given by the instructor throughout the applied exam. - Obtained results will be reported in according to the instructions and delivered to the instructor by storing them in a USB memory. # References I - Hadley Wickham and Garrett Grolemund. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data. O'Reilly Media, 2017. URL https://r4ds.had.co.nz. - Özgür Ergül. Guide to Programming and Algorithms Using R. Springer London, 2013. doi: 10.1007/978-1-4471-5328-3. URL https://doi.org/10.1007/978-1-4471-5328-3. - [3] Eric Pimpler. Data Visualization and Exploration with R: A practical guide to using R, RStudio, and Tidyverse for data visualization, exploration, and data science applications. Geospatial Training Services, 2017. - Michael Freeman and Joel Ross. Programming Skills for Data Science: Start Writing Code to Wrangle, Analyze, and Visualize Data with R. Addison-Wesley, 2019. ISBN 978-0-13-513310-1. - [5] Joao Mendes Moreira, Andre C. P. L. F. de Carvalho, and Tomas Horvath. A General Introduction to Data Analytics. John Wiley & Sons, 2019. ISBN 978-1-119-29625-6. - [6] Thomas Mailund. Beginning Data Science in R. Apress, 2017. doi: 10.1007/978-1-4842-2671-1. URL https://doi.org/10.1007/978-1-4842-2671-1. - [7] John D. Kelleher and Brendan Tierney. Data Science. The MIT Press, 2018. ISBN 978-0-262-53543-4. - [8] IBM Watson. Descriptive, predictive, and prescriptive analytics, 2015. URL https://gemba. nl/wp-content/uploads/2015/10/watsonbusinessvalue.png. - [9] Meera Kumar. Benefits of r programming, 10th Nov, 2018. URL https://miro.medium.com/max/1280/0*xhbfmMlL68YQ3Jk7.png. # References II - [10] Fan Ting Wei. Common data structures in r, 2019. URL https://io.wp.com/nusbasdata. files.wordpress.com/2018/01/datastructures.png?ssl=1&w=450&zoom=2. - [11] Mhairi McNeill. Base r cheat sheet, May, 2016. URL https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=&ved=2ahUKEwimOcSLuuDlAhXQAxAIHUPZAXMQFjAAegQIABAC&url=https%3A%2F%2Frstudio.com%2Fwp-content%2Fuploads%2F2016%2F05%2Fbase-r.pdf&usg=A0vVaw2NO9W19RLkf2S9pwnVCCmr. - [12] Vasileios Tsakalos. Data wrangling: Transforming (3/3), 2nd Aug, 2017. URL https://www.r-bloggers.com/data-wrangling-transforming-33/. - [13] Hadley Wickham, Romain François, Lionel Henry, and Kirill Müller. dplyr, 2019. URL https://dplyr.tidyverse.org. - $[14] \ \ Hadley \ Wickham \ and \ Lionel \ Henry. \ tidyr, \ 2019. \ \ URL \ \ https://tidyr.tidyverse.org.$ - [15] Jeff Griesemer. Data manipulation in r with dplyr, 5th Sep, 2019. URL https://miro.medium.com/max/1840/1*NXRsFH_12sfj79W-P4qI0Q.png. - [16] Roshan Talimi. tidyr, 2019. URL http://talimi.se/wp-content/uploads/2017/07/ Sk\begingroup\let\relax\relax\endgroup[Pleaseinsert\PrerenderUnicode{}intopreamble] rmavbild-2017-07-21-kl.-19.10.36.png. - [17] Hadley Wickham, Winston Chang, Lionel Henry, Thomas Lin Pedersen, Kohske Takahashi, Claus Wilke, Kara Woo, and Hiroaki Yutani. ggplot2, 2019. URL https://ggplot2.tidyverse.org. # References III - [18] Kasım Zor. Research and Application of Real-Time Short-Term Electrical Energy Consumption Forecasting Using Artificial Intelligence Based Techniques. PhD thesis, Department of Electrical and Electronics Engineering, Institute of Natural and Applied Sciences, Çukurova University. Adana. Turkey. 6th Sep. 2019. - [19] Kasım Zor, Özgür Çelik, Oğuzhan Timur, and Ahmet Teke. Short-term building electrical energy consumption forecasting by employing gene expression programming and gmdh networks. Energies, 13(5), 2020. ISSN 1996-1073. doi: 10.3390/en13051102. URL https://www.mdpi.com/1996-1073/13/5/1102.