

EEE407 - Renewable Energy Week 1: Course Introduction and Scope

ADANA ALPARSLAN TÜRKEŞ SCIENCE AND TECHNOLOGY UNIVERSITY

Dr Kasım Zor

Department of Electrical and Electronic Engineering

Spring 2020

 $m V1 \ W2 \ W3 \ W4 \ W5 \ W6 \ W7 \ W8 \ W9 \ W10 \ W11 \ W12 \ W13 \ W14 \ W15 \ W16 \ References$

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Units
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
- Wind Energy Part 2
- 8 Renewable Energy Forecasting
- 9 Midterm Examination
- 10 Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- 11 Geothermal Energy
- 12 Hydraulic Energy
- 13 Ocean, Wave, and Tidal Energy
- 14 Energy Storage, Microgrids, and Virtual Power Plants
- 15 Case Study: Feasibility Assessment for Renewable Energy Systems
- 16 Final Examination

V1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 References

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Unit
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
- 7 Wind Energy Part 2
- Willia Ellergy Fart 2
- 8 Renewable Energy Forecasting
- 9 Midterm Examination
- Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- III Geothermal Energy
- 12 Hydraulic Energy
- 13 Ocean, Wave, and Tidal Energy
- 14 Energy Storage, Microgrids, and Virtual Power Plants
- 15 Case Study: Feasibility Assessment for Renewable Energy Systems
- 16 Final Examination

Course Instructor

Dr Kasım Zor Electrical and Electronic Engineer, PhD

Research Interests

■ Energy Analytics, Energy Forecasting, Distributed Generation, Energy Economics, and Energy Efficiency

Contact Information

- Office: Rectorate Building, 1st Floor
- E-mail: kzor@atu.edu.tr
- Web: www.kasimzor.com.tr

Course Information

Course Title	Code	Semester	T+L (Hours)	Credits	ECTS
Renewable Energy	EEE407	7–8	3+0	3	5

Table 1: Table of Course Information

■ Prerequisites: None

■ Language: English

■ Level: Bachelor

■ Type: Elective

Course Assessment and Evaluation

Assessment Type	Quantity	Weight
Attendance	16	5%
Quizzes	4	10%
Assignments	1	10%
Midterm Examination	1	20%
Projects	1	15%
Final Examination	1	40%

Table 2: Table of Course Assessment and Evaluation

	Course Type	Allowed Rate	Allowed Hours
Absentee Rate	Main Course	30%	13

Table 3: Table of Absentee Rate

Learning Outcomes

- Define commonly used terms in energy systems
- Distinguish between energy and power terms
- Describe energy production and consumption on a distributed, national, and global scale
- Explain technical principles behind a variety of power generation technologies
- Employ correct units while describing energy and power terms
- Calculate energy and power consumed or generated in a system scenario for given inputs or outputs
- Calculate the efficiency of an energy system
- Calculate and benchmark emissions from different energy production technologies
- Implement basic forecasting applications and feasibility calculations for renewable energy systems

Recommended Sources

Additional Resources [5, 6, 7, 8, 9, 10, 11] Textbooks [1, 2, 3, 4]

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Units
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
- 7 Wind Energy Part 2
- 8 Renewable Energy Forecasting
- 9 Midterm Examination
- 10 Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- 11 Geothermal Energy
- Hydraulic Energy
- B Ocean, Wave, and Tidal Energy
- 14 Energy Storage, Microgrids, and Virtual Power Plants
- 15 Case Study: Feasibility Assessment for Renewable Energy Systems
- 6 Final Examination

Fundamentals of Energy, Transformations, and Units

What is 7.8 kWh in joules?

Figure 1: A transformation example [12]

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Unit
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
- 7 Wind Energy Part 2
- 8 Renewable Energy Forecasting
- 9 Midterm Examination
- 10 Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- **III** Geothermal Energy
- 12 Hydraulic Energy
- 13 Ocean, Wave, and Tidal Energy
- 14 Energy Storage, Microgrids, and Virtual Power Plants
- 15 Case Study: Feasibility Assessment for Renewable Energy Systems
- 16 Final Examination

Introduction to Renewable Energy [13]

1 W2 W3 **W4** W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 References

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Units
- Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
- 7 Wind Energy Part 2
- 8 Renewable Energy Forecasting
- 9 Midterm Examination
- 10 Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- III Geothermal Energy
- 12 Hydraulic Energy
- B Ocean, Wave, and Tidal Energy
- 14 Energy Storage, Microgrids, and Virtual Power Plants
- 15 Case Study: Feasibility Assessment for Renewable Energy Systems
- 16 Final Examination

Solar Energy - Part 1 [14]

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Units
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
 - Wind Energy Part 2
- 8 Renewable Energy Forecasting
 - 9 Midterm Examination
- 10 Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- III Geothermal Energy
- 12 Hydraulic Energy
- Cean, Wave, and Tidal Energy
- 14 Energy Storage, Microgrids, and Virtual Power Plants
- 5 Case Study: Feasibility Assessment for Renewable Energy Systems
- 16 Final Examination

Solar Energy - Part 2 [15]

V1 W2 W3 W4 W5 **W6** W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 References

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Units
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
- 7 Wind Energy Part 2
- 8 Renewable Energy Forecasting
- 9 Midterm Examination
- 10 Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- **III** Geothermal Energy
- 12 Hydraulic Energy
- B Ocean, Wave, and Tidal Energy
- 14 Energy Storage, Microgrids, and Virtual Power Plants
- 15 Case Study: Feasibility Assessment for Renewable Energy Systems
- 16 Final Examination

Wind Energy - Part 1 [16]

/1 W2 W3 W4 W5 W6 **W7** W8 W9 W10 W11 W12 W13 W14 W15 W16 Reference:

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Units
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
- 7 Wind Energy Part 2
- 8 Renewable Energy Forecasting
- 9 Midterm Examination
- Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- III Geothermal Energy
- 12 Hydraulic Energy
- 13 Ocean, Wave, and Tidal Energy
- 14 Energy Storage, Microgrids, and Virtual Power Plants
- 15 Case Study: Feasibility Assessment for Renewable Energy Systems
- 16 Final Examination

Wind Energy - Part 2 [17]

V1 W2 W3 W4 W5 W6 W7 **W8** W9 W10 W11 W12 W13 W14 W15 W16 References

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Units
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
- 7 Wind Energy Part 2
- 8 Renewable Energy Forecasting
- 9 Midterm Examination
- Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- **III** Geothermal Energy
- Hydraulic Energy
- 13 Ocean, Wave, and Tidal Energy
- 14 Energy Storage, Microgrids, and Virtual Power Plants
- 5 Case Study: Feasibility Assessment for Renewable Energy Systems
- 6 Final Examination

Renewable Energy Forecasting [18]

 V_1 W2 W3 W4 W5 W6 W7 W8 **W9** W10 W11 W12 W13 W14 W15 W16 References

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Units
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
- 7 Wind Energy Part 2
- 8 Renewable Energy Forecasting
- 9 Midterm Examination
- Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- **III** Geothermal Energy
- 12 Hydraulic Energy
- 13 Ocean, Wave, and Tidal Energy
- 14 Energy Storage, Microgrids, and Virtual Power Plants
- 15 Case Study: Feasibility Assessment for Renewable Energy Systems
- 16 Final Examination

Midterm Examination (Paper-Based)

Examples of midterm exam and its solutions will be shared with students before the exam.

#	Difficulty	Minutes	Pts	Scope
Q1	Very Easy	5	10	W1-W3
Q2	Easy	10	20	W4-W5
Q3	Moderate	30	30	W6-W7
Q4	Hard	45	40	W3-W8
	Total	90	100	W1-W8

Table 4: Assessment of Midterm Examination

V1 W2 W3 W4 W5 W6 W7 W8 W9 **W10** W11 W12 W13 W14 W15 W16 References

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Units
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
- 7 Wind Energy Part 2
- 8 Renewable Energy Forecast
- Renewable Energy Forecasting
- 9 Midterm Examination
- 10 Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- III Geothermal Energy
- 12 Hydraulic Energy
- B Ocean, Wave, and Tidal Energy
- 14 Energy Storage, Microgrids, and Virtual Power Plants
- 5 Case Study: Feasibility Assessment for Renewable Energy Systems
- 6 Final Examination

Bioenergy, Renewable Cogeneration and Trigeneration Power Plants [19]

T1 W2 W3 W4 W5 W6 W7 W8 W9 W10 **W11** W12 W13 W14 W15 W16 References

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Units
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
- 7 Wind Energy Part 2
- 8 Renewable Energy Forecasting
- 9 Midterm Examination
- 10 Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- 11 Geothermal Energy
- 12 Hydraulic Energy
- 13 Ocean, Wave, and Tidal Energy
- 14 Energy Storage, Microgrids, and Virtual Power Plants
- 15 Case Study: Feasibility Assessment for Renewable Energy Systems
- 16 Final Examination

Geothermal Energy [20]

T1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 **W12** W13 W14 W15 W16 References

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Units
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
- 7 Wind Energy Part 2
- 8 Renewable Energy Forecasting
 - 9 Midterm Examination
- 10 Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- 11 Geothermal Energy
 - 2 Hydraulic Energy
- Ocean, Wave, and Tidal Energy
- Energy Storage, Microgrids, and Virtual Power Plants
- 15 Case Study: Feasibility Assessment for Renewable Energy Systems
- 16 Final Examination

Hydraulic Energy [21]

V1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 **W13** W14 W15 W16 References

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Units
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
 - Wind Energy Part 2
- 8 Renewable Energy Forecasting
- 9 Midterm Examination
- 10 Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- 11 Geothermal Energy
- 12 Hydraulic Energy
- 13 Ocean, Wave, and Tidal Energy
- 14 Energy Storage, Microgrids, and Virtual Power Plants
- 15 Case Study: Feasibility Assessment for Renewable Energy Systems
- 6 Final Examination

Ocean, Wave, and Tidal Energy [22]

1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 **W14** W15 W16 References

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Units
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
- 7 Wind Energy Part 2
- 8 Renewable Energy Forecasting
- 9 Midterm Examination
- Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- **III** Geothermal Energy
- 12 Hydraulic Energy
- 13 Ocean, Wave, and Tidal Energy
- 14 Energy Storage, Microgrids, and Virtual Power Plants
- 15 Case Study: Feasibility Assessment for Renewable Energy Systems
- 6 Final Examination

Energy Storage, Microgrids, and Virtual Power Plants [23]

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Units
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
- 7 Wind Energy Part 2
- 8 Renewable Energy Forecasting
- 9 Midterm Examination
- 10 Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- III Geothermal Energy
- 12 Hydraulic Energy
- 13 Ocean, Wave, and Tidal Energy
- 14 Energy Storage, Microgrids, and Virtual Power Plants
- 15 Case Study: Feasibility Assessment for Renewable Energy Systems
- 16 Final Examination

Case Study: Feasibility Assessment for Renewable Energy Systems [24]

V1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 **W16** References

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Units
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
 - Wind Energy Part 2
- 8 Renewable Energy Forecasting
 - 9 Midterm Examination
- 10 Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- III Geothermal Energy
- 12 Hydraulic Energy
- B Ocean, Wave, and Tidal Energy
- 14 Energy Storage, Microgrids, and Virtual Power Plants
- 15 Case Study: Feasibility Assessment for Renewable Energy Systems
- 16 Final Examination

Final Examination (Paper-Based)

Examples of final exam and its solutions will be shared with students before the exam.

#	Difficulty	Minutes	Pts	Scope
Q1	Very Easy	5	10	W1-W15
Q2	Easy	10	20	W10-W14
Q3	Moderate	30	30	W10-W14
Q4	Hard	45	40	W15
Total		90	100	W1-W15

Table 5: Assessment of Final Examination

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 References

References I

- Muhammad H. Rashid. Electric Renewable Energy Systems. Academic Press, 2016.
- [2] Henrik Lund. Renewable Energy Systems: A Smart Energy Systems Approach to the Choice and Modeling of 100% Renewable Solutions, 2nd Ed. Academic Press, 2014.
- [3] Dmitry Kurochkin, Elena Shabliy, and Ekundayo Shittu. Renewable Energy: International Perspectives on Sustainability. Palgrave Macmillan, 2019.
- [4] Ozan Erdinç. Optimization in Renewable Energy Systems. Butterworth-Heinemann, 2017.
- [5] Ali Keyhani. Design of Smart Power Grid Renewable Energy Systems, 3rd Ed. Wiley, 2019.
- [6] Garry D. Price. Renewable Power and Energy: Photovoltaic Systems, volume 1. Momentum Press, 2018.
- [7] Vaughn Nelson and Kenneth Starcher. Wind Energy: Renewable Energy and the Environment, 3rd Ed. CRC Press, 2019.

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 References

References II

- [8] Vladimir Strezov and Hossain M. Anawar. Renewable Energy Systems from Biomass: Efficiency, Innovation, and Sustainability. CRC Press, 2019.
- [9] Mukund R. Patel. Wind and Solar Power Systems: Design, Analysis, and Operation, 2nd Ed. CRC Press, 2006.
- [10] Volker Quaschning. Renewable Energy and Climate Change. Wiley, 2010.
- [11] Milton Meckler and Lucas B. Hyman. Sustainable On-Site CHP Systems: Design, Construction, and Operations. McGraw-Hill, 2010.
- [12] Nagwa. Video: Converting between joules and kilowatt-hours.
- [13] Tim Price. 6 renewable energy trends to watch in 2019.
- [14] Energy Sector Management Assistance Program. Where sun meets water: Floating solar market report.
- [15] ecoticias.com. Acciona y abengoa construirán la primera planta termosolar de latinoamérica.
- [16] Tim Probert. Bigger, better, stronger turbines.
- [17] D. Todd Griffith. Innovative offshore vertical-axis wind turbine: Rotors.

References III

- [18] Leitat Managing Technologies: Projects Blog. Power supply to become more efficient, more stable and more secure.
- [19] MTU Onsite Energy. Combined heat and power from biogas. Technical report.
- [20] Global Geothermal News. Germany: Insheim geothermal power plant successfully supplies brine for lithium extraction demonstration plant.
- [21] Omexom. Hydro: The leading renewable source for electricity generation.
- [22] Nick Kaloterakis. National geographic, tidal energy: Diagram of tidal energy technologies.
- [23] Matti Vaattovaara. Microgrids and virtual power plants. ABB WEC seminar.
- [24] Liquid Learning. 10th pmo leadership summit.

