
W E E K 12

Inheritance &
Recursion

Topics

• Introduction to Inheritance
• Polymorphism

Introduction to Inheritance

• In the real world, many objects are a
specialized version of more general
objects
• Example: grasshoppers and bees are

specialized types of insect
• In addition to the general insect characteristics,

they have unique characteristics:
• Grasshoppers can jump
• Bees can sting, make honey, and build hives

Introduction to Inheritance (cont’d.)

Inheritance and the “Is a”
Relationship

• “Is a” relationship: exists when one
object is a specialized version of
another object
• Specialized object has all the characteristics of

the general object plus unique characteristics
• Example: Rectangle is a shape
 Daisy is a flower

Inheritance and the “Is a”
Relationship (cont’d.)

• Inheritance: used to create an “is a”
relationship between classes

• Superclass (base class): a general class
• Subclass (derived class): a specialized

class
• An extended version of the superclass

• Inherits attributes and methods of the superclass
• New attributes and methods can be added

Inheritance and the “Is a”
Relationship (cont’d.)

• For example, need to create classes for
cars, pickup trucks, and SUVs

• All are automobiles
• Have a make, year model, mileage, and price
• This can be the attributes for the base class

• In addition:
• Car has a number of doors
• Pickup truck has a drive type
• SUV has a passenger capacity

Inheritance and the “Is a”
Relationship (cont’d.)

• In a class definition for a subclass:
• To indicate inheritance, the superclass name is

placed in parentheses after subclass name
• Example: class Car(Automobile):

• The initializer method of a subclass calls the
initializer method of the superclass and then
initializes the unique data attributes

• Add method definitions for unique methods

Inheritance in UML Diagrams

• In UML diagram, show inheritance by
drawing a line with an open arrowhead
from subclass to superclass

Polymorphism

• Polymorphism: an object’s ability to
take different forms

• Essential ingredients of polymorphic
behavior:
• Ability to define a method in a superclass and

override it in a subclass
• Subclass defines method with the same name

• Ability to call the correct version of overridden
method depending on the type of object that
called for it

Polymorphism (cont’d.)

• In previous inheritance examples showed
how to override the __init__ method
• Called superclass __init__ method and then

added onto that
• The same can be done for any other

method
• The method can call the superclass equivalent

and add to it, or do something completely
different

The isinstance Function

• Polymorphism provides great flexibility
when designing programs

• AttributeError exception: raised
when a method is receives an object
which is not an instance of the right
class

• isinstance function: determines
whether object is an instance of a class
• Format: isinstance(object, class)

Summary

• This chapter covered:
• Inheritance, including:

• “Is a” relationships
• Subclasses and superclasses
• Defining subclasses and initializer methods
• Depicting inheritance in UML diagrams

• Polymorphism
• The isinstance function

Topics

• Introduction to Recursion
• Problem Solving with Recursion
• Examples of Recursive Algorithms

Introduction to Recursion

• Recursive function: a function that calls
itself

• Recursive function must have a way to
control the number of times it repeats
• Usually involves an if-else statement which

defines when the function should return a
value and when it should call itself

• Depth of recursion: the number of times
a function calls itself

Introduction to Recursion (cont’d.)

Problem Solving with Recursion

• Recursion is a powerful tool for solving
repetitive problems

• Recursion is never required to solve a
problem
• Any problem that can be solved recursively

can be solved with a loop
• Recursive algorithms usually less efficient than

iterative ones
• Due to overhead of each function call

Problem Solving with Recursion
(cont’d.)

• Some repetitive problems are more
easily solved with recursion

• General outline of recursive function:
• If the problem can be solved now without

recursion, solve and return
• Known as the base case

• Otherwise, reduce problem to smaller problem
of the same structure and call the function
again to solve the smaller problem

• Known as the recursive case

Using Recursion to Calculate the
Factorial of a Number

• In mathematics, the n! notation
represents the factorial of a number n
• For n = 0, n! = 1
• For n > 0, n! = 1 x 2 x 3 x … x n

• The above definition lends itself to
recursive programming
• n = 0 is the base case
• n > 0 is the recursive case

• factorial(n) = n x factorial(n-1)

Using Recursion (cont’d.)

Using Recursion (cont’d.)

• Since each call to the recursive function
reduces the problem:
• Eventually, it will get to the base case which

does not require recursion, and the recursion
will stop

• Usually the problem is reduced by
making one or more parameters smaller
at each function call

Direct and Indirect Recursion

• Direct recursion: when a function
directly calls itself
• All the examples shown so far were of direct

recursion
• Indirect recursion: when function A

calls function B, which in turn calls
function A

Examples of Recursive Algorithms

• Summing a range of list elements with
recursion
• Function receives a list containing range of

elements to be summed, index of starting item
in the range, and index of ending item in the
range

• Base case:
•if start index > end index return 0

• Recursive case:
• return current_number + sum(list, start+1, end)

Examples of Recursive Algorithms
(cont’d.) The Fibonacci Series

• Fibonacci series: has two base cases
• if n = 0 then Fib(n) = 0
• if n = 1 then Fib(n) = 1
• if n > 1 then Fib(n) = Fib(n-1) + Fib(n-2)

• Corresponding function code:

Finding the Greatest Common
Divisor

• Calculation of the greatest common divisor (GCD) of
two positive integers
• If x can be evenly divided by y, then
• gcd(x,y) = y
• Otherwise, gcd(x,y) = gcd(y, remainder of x/y)

• Corresponding function code:

The Towers of Hanoi

• Mathematical game commonly used to
illustrate the power of recursion
• Uses three pegs and a set of discs in

decreasing sizes
• Goal of the game: move the discs from

leftmost peg to rightmost peg
• Only one disc can be moved at a time
• A disc cannot be placed on top of a smaller disc
• All discs must be on a peg except while being

moved

The Towers of Hanoi (cont’d.)

The Towers of Hanoi (cont’d)

• Problem statement: move n discs from
peg 1 to peg 3 using peg 2 as a
temporary peg

• Recursive solution:
• If n == 1: Move disc from peg 1 to peg 3
• Otherwise:

• Move n-1 discs from peg 1 to peg 2, using peg 3
• Move remaining disc from peg 1 to peg 3
• Move n-1 discs from peg 2 to peg 3, using peg 1

The Towers of Hanoi (cont’d.)

Recursion versus Looping

• Reasons not to use recursion:
• Less efficient: entails function calling overhead

that is not necessary with a loop
• Usually a solution using a loop is more evident

than a recursive solution
• Some problems are more easily solved

with recursion than with a loop
• Example: Fibonacci, where the mathematical

definition lends itself to recursion

Summary

• This chapter covered:
• Definition of recursion
• The importance of the base case
• The recursive case as reducing the problem

size
• Direct and indirect recursion
• Examples of recursive algorithms
• Recursion versus looping

