WEEK 12

Inheritance &
Recursion

Topics

e Introduction to Inheritance
* Polymorphism

Introduction to Inheritance

* In the real world, many objects are a
specialized version of more general

objects
« Example: grasshoppers and bees are
specialized types of insect

* In addition to the general insect characteristics,

they have unique characteristics:
» Grasshoppers can jump
* Bees can sting, make honey, and build hives

Introduction to Inheritance (cont’d.)

Figure 11-1 Bumblebees and grasshoppers are specialized versions of an insect

All insects have
{_ Insect) certain characteristics.
NS

X

In addition to the common In addition to the common

insect characteristics, the insect characteristics, the
bumblebee has its own unique grasshopper has its own unique

characteristics such as the characteristics such as the

ability to sting. ability to jump.

Inheritance and the “Is a”
Relationship

» “Is @” relationship: exists when one
object is a specialized version of
another object

» Specialized object has all the characteristics of
the general object plus unique characteristics

* Example: Rectangle is a shape
Daisy is a flower

Inheritance and the “Is a”
Relationship (cont’d.)

* Inheritance: used to create an “is a”
relationship between classes

» Superclass (base class): a general class
» Subclass (derived class): a specialized

class
* An extended version of the superclass
* Inherits attributes and methods of the superclass
* New attributes and methods can be added

Inheritance and the “Is a”
Relationship (cont’d.)

* For example, need to create classes for
cars, pickup trucks, and SUVs

* All are automobiles
* Have a make, year model, mileage, and price
« This can be the attributes for the base class

* In addition:
» Car has a number of doors
 Pickup truck has a drive type
« SUV has a passenger capacity

Inheritance and the “Is a”
Relationship (cont’d.)

* In a class definition for a subclass:

* To indicate inheritance, the superclass name is

placed in parentheses after subclass name
« Example: class Car (Automobile) :

» The initializer method of a subclass calls the
initializer method of the superclass and then
initializes the unique data attributes

* Add method definitions for unique methods

Inheritance in UML Diagrams

* In UML diagram, show inheritance by
drawing a line with an open arrowhead
from subclass to superclass

Figure 11-2 UML diagram showing inheritance

Automobile

__make
__model
__mileage
__price

__init__(make, model,
mileage, price)
set_make(make)
set_model(model)
set_mileage(mileage)

get_model()
get_mileage()
get_price()

Car Truck suv

__doors __drive_type __pass_cap

__init__(make, model, __init__(make, model, __init__(make, model,
mileage, price, doors) mileage, price, drive_type) mileage, price, pass_cap)

set_doors(doors) set_drive_type(drive_type) set_pass_cap(pass_cap)

get_doors() get_drive_type() get_pass_cap()

Polymorphism

* Polymorphism: an object’s ability to
take different forms

» Essential ingredients of polymorphic

behavior:
* Ability to define a method in a superclass and

override it in a subclass
» Subclass defines method with the same name

« Ability to call the correct version of overridden
method depending on the type of object that
called for it

Polymorphism (cont’d.)

* In previous inheritance examples showed
how to override the __init method
« Called superclass init method and then
added onto that

 The same can be done for any other
method
* The method can call the superclass equivalent
and add to it, or do something completely
different

The isinstance Function

* Polymorphism provides great flexibility
when designing programs

e AttributeError exception: raised
when a method is receives an object
which is not an instance of the right
class

* isinstance function: determines

whether object is an instance of a class
« Format: isinstance (object, class)

Summary

* This chapter covered:

* Inheritance, including:
* “Is @” relationships
» Subclasses and superclasses
+ Defining subclasses and initializer methods
» Depicting inheritance in UML diagrams

* Polymorphism

» The isinstance function

Topics

* Introduction to Recursion
* Problem Solving with Recursion
 Examples of Recursive Algorithms

Introduction to Recursion

e Recursive function: a function that calls
itself

* Recursive function must have a way to
control the number of times it repeats
» Usually involves an if-else statement which
defines when the function should return a
value and when it should call itself

* Depth of recursion: the number of times
a function calls itself

Figure 12-2 Six calls to the message function

The function is first called First call of the function
from the main function.

Value of times: 5

Second call of the function
The second through sixth

calls are recursive. Value of times: 4

Third call of the function

Value of times: 3

Fourth call of the function

Value of times: 2

Fifth call of the function

Value of times: 1

Sixth call of the function

Value of times: 0

Introduction to Recursion (cont’d.)

Figure 12-3 Control returns to the point after the recursive function call

Recursive function call def message(times):
if times > 0:

print ('This is a recursive function.')
- ge(times - 1)

—

Control returns here from the recursive call.
There are no more statements to execute
in this function, so the function returns.

Problem Solving with Recursion

* Recursion is a powerful tool for solving
repetitive problems

* Recursion is never required to solve a
problem
* Any problem that can be solved recursively
can be solved with a loop
* Recursive algorithms usually less efficient than

iterative ones
* Due to overhead of each function call

Problem Solving with Recursion
(cont’d.)

* Some repetitive problems are more
easily solved with recursion

e General outline of recursive function:
* If the problem can be solved now without
recursion, solve and return
* Known as the base case
» Otherwise, reduce problem to smaller problem
of the same structure and call the function
again to solve the smaller problem
« Known as the recursive case

Using Recursion to Calculate the
Factorial of a Number

* |n mathematics, the n! notation
represents the factorial of a number n
* Forn=0,n'=1
s Forn>0,n'=1x2x3x...Xn

 The above definition lends itself to

recursive programming
* n=0is the base case
* n> 0 is the recursive case

« factorial(n) = n x factorial(n-1)

Using Recursion (cont’d.)

The factorial function uses recursion to
calculate the factorial of its argument,
which is assumed to be nonnegative.
def factorial(num):
if num ==
return 1
else:
return num * factorial(num - 1)

Figure 12-4 The value of num and the return value during each call of the functior

The function is first called

from the main function. —» | st call of the function

Value of num: 4

Retumn value: 24

The second through fifth
calls are recursive,
Second call of the function

Value of num: 3

Return value: 6

L Third call of the function

Value of num: 2

Return value: 2

L Fourth call of the function

Value of num: 1

Return value: 1

L Fifth call of the function

Value of num: 0

Return value: 1

Using Recursion (cont’d.)

» Since each call to the recursive function
reduces the problem:

» Eventually, it will get to the base case which
does not require recursion, and the recursion
will stop

» Usually the problem is reduced by
making one or more parameters smaller
at each function call

Direct and Indirect Recursion

e Direct recursion: when a function
directly calls itself
 All the examples shown so far were of direct
recursion
* Indirect recursion: when function A
calls function B, which in turn calls
function A

Examples of Recursive Algorithms

« Summing a range of list elements with
recursion
* Function receives a list containing range of
elements to be summed, index of starting item
in the range, and index of ending item in the
range

» Base case:
eif start index > end index return 0

* Recursive case:

* return current number + sum(list, start+l, end)

Examples of Recursive Algorithms
(cont’d.)

The range_sum function returns the sum of a specified
range of items in num list. The start parameter
specifies the index of the starting item. The end
parameter specifies the index of the ending item.
def range_ sum(num_list, start, end):
if start > end:
return 0
else:
return num list[start] + range_sum(num list, start + 1, end)

The Fibonacci Series

* Fibonacci series: has two base cases
e if n = 0 then Fib(n) 0
¢ if n = 1 then Fib(n) 1
e if n > 1 then Fib(n) Fib(n-1) + Fib (n-2)

» Corresponding function code:

The fib function returns the nth number
in the Fibonacci series.
def fib(n):
if n == 0:
return 0
elif n == 1:
return 1
else:
return fib(n - 1) + fib(n - 2)

Finding the Greatest Common
Divisor

* Calculation of the greatest common divisor (GCD) of
two positive integers
+ If x can be evenly divided by y, then
. ged(x,y) =y
» Otherwise, gcd(x,y) = gcd(y, remainder of x/y)
* Corresponding function code:

The gcd function returns the greatest common
divisor of two numbers.
def gcd(x, y):

The Towers of Hanoi

 Mathematical game commonly used to
illustrate the power of recursion
» Uses three pegs and a set of discs in
decreasing sizes
» Goal of the game: move the discs from
leftmost peg to rightmost peg
* Only one disc can be moved at a time

» Adisc cannot be placed on top of a smaller disc
+ All discs must be on a peg except while being

if x %y == 0: moved
return y
else:
return gcd(x, X % V)
= L) Figure 12-6 Steps for moving three pegs
The Towers of Hanoi (cont’d.) N S ——
== ‘ | ‘ h” ” !
[— \ | = N \
I;" é:—:%\ - | | é: :}4 SRS \l
Original sstup. First move: Move disc 110 peg 3.
Figure 12-5 The pegs and discs in the Tower of Hanoi game '9 <H> {- 1 \ Q {} 1 ﬂ l
| NS L | | — Uy, |
ﬂ FZI ‘;" NS 7:1)@?::_»:;‘ D ‘.‘- ."‘ g—:;)'é:i:)ﬂ ' ."‘
: Second move: Move disc 2 to peg 2. : : Third move: Mova disc 110 pag 2 l
e < N ber o ~ |
,"‘ 7 'é;%&%: ‘:ﬁ l"‘ ;" g‘f—‘} Q:;-:Qg::::?l "‘
(Fourth move: Move disc 3 to peg 3. I : Fifth move: Move disc 1 to peg 1 /
1 A f

T S
: : \:;é?%} '\

Sixth move: Move disc 2 to peg 3. Seventh move: Move disc 1 1o peg 3

The Towers of Hanoi (cont’d)

» Problem statement: move n discs from
peg 1 to peg 3 using peg 2 as a
temporary peg

* Recursive solution:
 If n == 1: Move disc from peg 1 to peg 3
» Otherwise:
* Move n-1 discs from peg 1 to peg 2, using peg 3
* Move remaining disc from peg 1 to peg 3
* Move n-1 discs from peg 2 to peg 3, using peg 1

The Towers of Hanoi (cont’d.)

The moveDiscs function displays a disc move in
the Towers of Hanoi game.
The parameters are:

nums: The number of discs to move.

from peg: The peg to move from.

to_peg: The peg to move to.

temp peg: The temporary peg.

def move discs(num, from peg, to peg, temp peg):

if num > O0:
move discs(num - 1, from peg, temp peg, to_peg)
print('Move a disc from peg', from peg, 'to peg', to_peq)
move discs(num - 1, temp peg, to peg, from peg)

Recursion versus Looping

* Reasons not to use recursion:
* Less efficient: entails function calling overhead
that is not necessary with a loop
* Usually a solution using a loop is more evident
than a recursive solution

 Some problems are more easily solved

with recursion than with a loop
« Example: Fibonacci, where the mathematical
definition lends itself to recursion

Summary

* This chapter covered:
* Definition of recursion
The importance of the base case
The recursive case as reducing the problem
size
Direct and indirect recursion
Examples of recursive algorithms
Recursion versus looping

