

EEE407 - Renewable Energy Week 1: Course Introduction and Scope

ADANA ALPARSLAN TÜRKEŞ SCIENCE AND TECHNOLOGY UNIVERSITY

Dr Kasım Zor

Department of Electrical and Electronic Engineering

Fall 2021

 $m V1 \ W2 \ W3 \ W4 \ W5 \ W6 \ W7 \ W8 \ W9 \ W10 \ W11 \ W12 \ W13 \ W14 \ W15 \ W16 \ References$

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Units
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
 - Wind Energy Part 2
- 8 Power-to-X
- 9 Midterm Examination
- 10 Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- 11 Geothermal Energy
- 12 Hydraulic Energy
- 13 Ocean, Wave, and Tidal Energy
- 14 Energy Storage, Microgrids, and Virtual Power Plants
- 15 Case Study: Feasibility Assessment for Renewable Energy Systems
- 16 Final Examination

V1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 References

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Unit
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
 - Wind Energy Part 2
- 8 Power-to-X
- 9 Midterm Examination
- 10 Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- **III** Geothermal Energy
- 12 Hydraulic Energy
- 13 Ocean, Wave, and Tidal Energy
- 14 Energy Storage, Microgrids, and Virtual Power Plants
- 15 Case Study: Feasibility Assessment for Renewable Energy Systems
- 16 Final Examination

Course Instructor

Dr Kasım Zor Electrical and Electronic Engineer, PhD

Research Interests

 Electrical Energy and Power Systems, Electric Load Forecasting, Data Analytics, Artificial Intelligence, and Renewable Energy

Contact Information

- Office: Room 210, West Wing, Prefab Building
- E-mail: kzor@atu.edu.tr
- Web: www.kasimzor.com.tr

Course Information

Course Title	Code	Semester	T+L (Hours)	Credits	ECTS
Renewable Energy	EEE407	7	3+0	3	5

Table 1: Table of Course Information

■ Prerequisites: None

■ Language: English

■ Level: Bachelor

■ Type: Elective

Course Assessment and Evaluation

Assessment Type	Quantity	Weight
Quizzes	2	5%
Assignment	1	10%
Midterm Examination	1	20%
Project Work	1	25%
Final Examination	1	40%

Table 2: Table of Course Assessment and Evaluation

	Course Type	Allowed Rate	Allowed Hours
Absentee Rate	Main Course	30%	13

Table 3: Table of Absentee Rate

V1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 References

Learning Outcomes

- Define commonly used terms in energy systems
- Distinguish between energy and power terms
- Describe energy production and consumption on a distributed, national, and global scale
- Explain technical principles behind a variety of power generation technologies
- Employ correct units while describing energy and power terms
- Calculate energy and power consumed or generated in a system scenario for given inputs or outputs
- Calculate the efficiency of an energy system
- Calculate and benchmark emissions from different energy production technologies
- Implement basic feasibility calculations for renewable energy systems

W1000000 00

Recommended Sources

Additional Resources [5, 6, 7, 8, 9, 10, 11] Textbooks [1, 2, 3, 4]

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Units
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
 - Wind Energy Part 2
- 8 Power-to-X
- 9 Midterm Examination
- 10 Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- III Geothermal Energy
- 12 Hydraulic Energy
- B Ocean, Wave, and Tidal Energy
- 14 Energy Storage, Microgrids, and Virtual Power Plants
- 5 Case Study: Feasibility Assessment for Renewable Energy Systems
- 6 Final Examination

Course Contents – Week 2

Fundamentals of Energy, Transformations, and Units

Figure 1: A transformation example [12]

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Unit
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
 - Wind Energy Part 2
- 8 Power-to-X
- 9 Midterm Examination
- 10 Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- **III** Geothermal Energy
- Hydraulic Energy
- 13 Ocean, Wave, and Tidal Energy
- 14 Energy Storage, Microgrids, and Virtual Power Plants
- 15 Case Study: Feasibility Assessment for Renewable Energy Systems
- 16 Final Examination

 $^{\prime}1$ W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 References

Course Contents – Week 3

Introduction to Renewable Energy [13]

1 W2 W3 **W4** W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 References

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Units
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
 - Wind Energy Part 2
- 8 Power-to-X
- 9 Midterm Examination
- 10 Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- **III** Geothermal Energy
- 12 Hydraulic Energy
- 13 Ocean, Wave, and Tidal Energy
- 14 Energy Storage, Microgrids, and Virtual Power Plants
- 15 Case Study: Feasibility Assessment for Renewable Energy Systems
- 6 Final Examination

Course Contents – Week 4

Solar Energy - Part 1 [14]

V1 W2 W3 W4 **W5** W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 References

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Units
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
 - Wind Energy Part 2
- 8 Power-to-X
- 9 Midterm Examination
- 10 Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- **III** Geothermal Energy
- Hydraulic Energy
- B Ocean, Wave, and Tidal Energy
- 14 Energy Storage, Microgrids, and Virtual Power Plants
- 15 Case Study: Feasibility Assessment for Renewable Energy Systems
- 16 Final Examination

Course Contents – Week 5

Solar Energy - Part 2 [15]

V1 W2 W3 W4 W5 **W6** W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 References

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Units
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
 - Wind Energy Part 2
- 8 Power-to-X
- 9 Midterm Examination
- Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- **III** Geothermal Energy
- Hydraulic Energy
- B Ocean, Wave, and Tidal Energy
- 14 Energy Storage, Microgrids, and Virtual Power Plants
- 15 Case Study: Feasibility Assessment for Renewable Energy Systems
- 16 Final Examination

1 W2 W3 W4 W5 **W6** W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 References

Course Contents – Week 6

Wind Energy - Part 1 [16]

T1 W2 W3 W4 W5 W6 **W7** W8 W9 W10 W11 W12 W13 W14 W15 W16 References

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Units
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
- 7 Wind Energy Part 2
- 8 Power-to-X
- 9 Midterm Examination
- Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- **III** Geothermal Energy
- 12 Hydraulic Energy
- 13 Ocean, Wave, and Tidal Energy
- 14 Energy Storage, Microgrids, and Virtual Power Plants
- 15 Case Study: Feasibility Assessment for Renewable Energy Systems
- 16 Final Examination

 $^{\prime}1$ W2 W3 W4 W5 W6 **W7** W8 W9 W10 W11 W12 W13 W14 W15 W16 References

Course Contents – Week 7

Wind Energy - Part 2 [17]

 $^{\prime}1$ W2 W3 W4 W5 W6 W7 **W8** W9 W10 W11 W12 W13 W14 W15 W16 References 00000 00 00 00 00 00 00 00 00

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Units
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
- 7 Wind Energy Part 2
- 8 Power-to-X
- 9 Midterm Examination
- Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- **III** Geothermal Energy
- Hydraulic Energy
- 13 Ocean, Wave, and Tidal Energy
- 14 Energy Storage, Microgrids, and Virtual Power Plants
- 15 Case Study: Feasibility Assessment for Renewable Energy Systems
- 16 Final Examination

1 W2 W3 W4 W5 W6 W7 **W8** W9 W10 W11 W12 W13 W14 W15 W16 References

Course Contents – Week 8

Power-to-X [18]

 $m V1 \ W2 \ W3 \ W4 \ W5 \ W6 \ W7 \ W8 \ W9 \ W10 \ W11 \ W12 \ W13 \ W14 \ W15 \ W16 \ References$

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Units
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
- 7 Wind Energy Part 2
- o D
- 8 Power-to-X
- 9 Midterm Examination
- Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- **III** Geothermal Energy
- 12 Hydraulic Energy
- B Ocean, Wave, and Tidal Energy
- 14 Energy Storage, Microgrids, and Virtual Power Plants
- 15 Case Study: Feasibility Assessment for Renewable Energy Systems
- 16 Final Examination

Course Contents – Week 9

Midterm Examination (Paper-Based)

#	Difficulty	Minutes	Pts	Scope
Q1	Very Easy	5	10	W1-W3
Q2	Easy	10	20	W4-W5
Q3	Moderate	30	30	W6-W7
Q4	Hard	45	40	W3-W8
	Total	90	100	W1-W8

Table 4: Assessment of Midterm Examination

 $m V1 \ W2 \ W3 \ W4 \ W5 \ W6 \ W7 \ W8 \ W9 \ W10 \ W11 \ W12 \ W13 \ W14 \ W15 \ W16 \ References$

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Unit
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
 - Wind Energy Part 2
- 8 Power-to-X
- 9 Midterm Examination
- 10 Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- 11 Geothermal Energy
- 12 Hydraulic Energy
- Cean, Wave, and Tidal Energy
- 14 Energy Storage, Microgrids, and Virtual Power Plants
- 15 Case Study: Feasibility Assessment for Renewable Energy Systems
- 16 Final Examination

(1 W2 W3 W4 W5 W6 W7 W8 W9 **W10** W11 W12 W13 W14 W15 W16 References

Course Contents – Week 10

Bioenergy, Renewable Cogeneration and Trigeneration Power Plants [19]

T1 W2 W3 W4 W5 W6 W7 W8 W9 W10 **W11** W12 W13 W14 W15 W16 References

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Units
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
 - Wind Energy Part 2
- 8 Power-to-X
- 9 Midterm Examination
- Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- 11 Geothermal Energy
- 12 Hydraulic Energy
- 13 Ocean, Wave, and Tidal Energy
- 14 Energy Storage, Microgrids, and Virtual Power Plants
- 15 Case Study: Feasibility Assessment for Renewable Energy Systems
- 6 Final Examination

T1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 References

Course Contents – Week 11

Geothermal Energy [20]

V1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 **W12** W13 W14 W15 W16 References

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Units
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
 - Wind Energy Part 2
- 8 Power-to-X
- 9 Midterm Examination
- 10 Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- 11 Geothermal Energy
 - 2 Hydraulic Energy
- Ocean, Wave, and Tidal Energy
- 14 Energy Storage, Microgrids, and Virtual Power Plants
- 15 Case Study: Feasibility Assessment for Renewable Energy Systems
- 16 Final Examination

1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 **W12** W13 W14 W15 W16 References

Course Contents – Week 12

Hydraulic Energy [21]

V1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 **W13** W14 W15 W16 References

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Units
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
 - Wind Energy Part 2
- 8 Power-to-X
- 9 Midterm Examination
- 10 Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- 11 Geothermal Energy
- 12 Hydraulic Energy
- 13 Ocean, Wave, and Tidal Energy
- 4 Energy Storage, Microgrids, and Virtual Power Plants
- 15 Case Study: Feasibility Assessment for Renewable Energy Systems
- 6 Final Examination

V1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 **W13** W14 W15 W16 References

Course Contents – Week 13

Ocean, Wave, and Tidal Energy [22]

 $^{\prime}1$ W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 **W14** W15 W16 References 00000 00 00 00 00 00 00 00 00 00 00

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Unit
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
 - Wind Energy Part 2
- 8 Power-to-X
- 9 Midterm Examination
- Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- **III** Geothermal Energy
- Hydraulic Energy
- 13 Ocean, Wave, and Tidal Energy
- 14 Energy Storage, Microgrids, and Virtual Power Plants
- 15 Case Study: Feasibility Assessment for Renewable Energy Systems
- 6 Final Examination

71 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 **W14** W15 W16 References

Course Contents – Week 14

Energy Storage, Microgrids, and Virtual Power Plants [23]

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Units
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
 - Wind Energy Part 2
- 8 Power-to-X
- 9 Midterm Examination
- 10 Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- **III** Geothermal Energy
- Hydraulic Energy
- B Ocean, Wave, and Tidal Energy
- 14 Energy Storage, Microgrids, and Virtual Power Plants
- 15 Case Study: Feasibility Assessment for Renewable Energy Systems
- 16 Final Examination

Course Contents – Week 15

Case Study: Feasibility Assessment for Renewable Energy Systems [24]

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 **W16** References 00000 00 00 00 00 00 00 00 00

- 1 Course Introduction and Scope
- 2 Fundamentals of Energy, Transformations, and Unit
- 3 Introduction to Renewable Energy
- 4 Solar Energy Part 1
- 5 Solar Energy Part 2
- 6 Wind Energy Part 1
- 7 Wind Energy Part 2
- 8 Power-to-X
- 9 Midterm Examination
- 10 Bioenergy, Renewable Cogeneration and Trigeneration Power Plants
- **III** Geothermal Energy
- Hydraulic Energy
- Cean, Wave, and Tidal Energy
- 14 Energy Storage, Microgrids, and Virtual Power Plants
- 15 Case Study: Feasibility Assessment for Renewable Energy Systems
- 16 Final Examination

Course Contents – Week 16

Final Examination (Paper-Based)

#	Difficulty	Minutes	Pts	Scope
Q1	Very Easy	5	10	W1-W15
Q2	Easy	10	20	W10-W14
Q3	Moderate	30	30	W10-W14
Q4	Hard	45	40	W15
Total		90	100	W1-W15

Table 5: Assessment of Final Examination

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 References

References I

- Muhammad H. Rashid. Electric Renewable Energy Systems. Academic Press, Boston, 1 edition, 2016. ISBN 978-0-12-804448-3. doi: 10.1016/ B978-0-12-804448-3.00027-X.
- [2] Henrik Lund. Renewable Energy Systems: A Smart Energy Systems Approach to the Choice and Modeling of 100% Renewable Solutions, 2nd Ed. Academic Press, Boston, 2 edition, 2014. ISBN 978-0-12-410423-5. doi: 10.1016/B978-0-12-410423-5.09990-9.
- [3] Dmitry Kurochkin, Elena Shabliy, and Ekundayo Shittu. Renewable Energy: International Perspectives on Sustainability. Palgrave Macmillan, 1 edition, 2019. ISBN 978-3-030-14206-3. doi: 10.1007/978-3-030-14207-0.
- [4] Ozan Erdinç. Optimization in Renewable Energy Systems. Butterworth-Heinemann, Boston, 1 edition, 2017. ISBN 978-0-08-101041-9. doi: 10.1016/ B978-0-08-101041-9.00016-8.
- [5] Ali Keyhani. Design of Smart Power Grid Renewable Energy Systems, 3rd Ed. Wiley, 3 edition, 2019. ISBN 978-1-11-957332-6.

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 References

References II

- [6] Garry D. Price. Renewable Power and Energy: Photovoltaic Systems, volume 1. Momentum Press, New York, 1 edition, 2018. ISBN 978-1-94708-386-8.
- [7] Vaughn Nelson and Kenneth Starcher. Wind Energy: Renewable Energy and the Environment, 3rd Ed. CRC Press, Boca Raton, 3 edition, 2019. ISBN 978-1-138-61534-2.
- [8] Vladimir Strezov and Hossain M. Anawar. Renewable Energy Systems from Biomass: Efficiency, Innovation, and Sustainability. CRC Press, Boca Raton, 1 edition, 2019. ISBN 978-1-4987-6790-3.
- [9] Mukund R. Patel. Wind and Solar Power Systems: Design, Analysis, and Operation, 2nd Ed. CRC Press, Boca Raton, 2 edition, 2006. ISBN 978-0-8493-1570-1.
- [10] Volker Quaschning. Renewable Energy and Climate Change. Wiley, West Sussex, 1 edition, 2010. ISBN 978-0-470-74707-0.
- [11] Milton Meckler and Lucas B. Hyman. Sustainable On-Site CHP Systems: Design, Construction, and Operations. McGraw-Hill, 1 edition, 2010. ISBN 978-0-07-160317-1.

W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 References

References III

- Nagwa. Video: Converting between joules and kilowatt-hours, 2020. URL https://www.nagwa.com/en/videos/373127010149/.
- [13] Tim Price. 6 renewable energy trends to watch in 2019, 2018. URL https: //worldofrenewables.com/wp-content/uploads/2018/12/renewable22.jpg.
- Energy Sector Management Assistance Program. Where sun meets water: Floating solar market report, 2019. URL https://esmap.org/sites/default/ files/Infographics/FPV-infographic-final.png.
- [15] ecoticias.com. Acciona y abengoa construirán la primera planta termosolar de latinoamérica, 2018. URL https://www.ecoticias.com/userfiles/extra/ DFTA_072_.jpg.
- Tim Probert. Bigger, better, stronger turbines, 2012. URL https://www. [16] raconteur.net/wp-content/uploads/2012/05/offshore-wind-energy.jpg.
- [17]D. Todd Griffith. Innovative offshore vertical-axis wind turbine: Ro-URL https://energy.sandia.gov/wp-content/gallery/uploads/ VAWT-vs-HAWT.jpg.

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 References

References IV

- [18] Siemens. Power-to-x, 2020. URL https://assets.new.siemens.com/siemens/assets/api/uuid:3fd49401-2474-4916-a0e4-f9da35f22318/width: 1125/quality:high/version:1587996899/ptx-what-is-it2.jpg.
- [19] MTU Onsite Energy. Combined heat and power from biogas. Technical report, 2011.
- [20] Global Geothermal News. Germany: Insheim geothermal power plant successfully supplies brine for lithium extraction demonstration plant, 2020. URL https://v-er.com/wp-content/uploads/ VulcanEnergyZeroCarbonDiagram3DNoHeaderText.jpg.
- [21] Omexom. Hydro: The leading renewable source for electricity generation, 2018. URL https://www.omexom.com/wp-content/uploads/2018/07/ Hydro-Power-Plant.png.
- [22] Nick Kaloterakis. National geographic, tidal energy: Diagram of tidal energy technologies. URL https://media.nationalgeographic.org/assets/photos/ 3ce/9d5/3ce9d5dc-ff4b-4024-866f-14e638e45e2e.jpg.

V1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 References

References V

- [23] Matti Vaattovaara. Microgrids and virtual power plants. ABB WEC seminar, 2019.
- [24] Liquid Learning. 10th pmo leadership summit. URL https: //liquidlearn-production.s3.amazonaws.com/images/PM00220A/PM00220A_nov19_banner.jpg.

