
EEE110 - Computer Programming
Week 12: Inheritance, Polymorphism, Virtual Functions,

Exceptions, Templates, and the STL

Dr Kasım Zor

Department of Electrical and Electronic Engineering

Spring 2020
Dr Kasım Zor Department of Electrical and Electronic Engineering

EEE110 - W12: Inheritance, Polymorphism, Virtual Functions, Exceptions, Templates, and the STL

Chapter 15:

Inheritance,
Polymorphism,

and Virtual
Functions

1

15.1
• What Is Inheritance?

2

What Is Inheritance?

• Provides a way to create a new class from
an existing class

• The new class is a specialized version of
the existing class

3

Example: Insects

4

The "is a" Relationship

• Inheritance establishes an "is a"
relationship between classes.
– A poodle is a dog
– A car is a vehicle
– A flower is a plant
– A football player is an athlete

5

Inheritance – Terminology and
Notation

• Base class (or parent) – inherited from
• Derived class (or child) – inherits from the base class
• Notation:

 class Student // base class
 {
 . . .
 };
 class UnderGrad : public student
 { // derived class
 . . .
 };

6

Back to the ‘is a’ Relationship

• An object of a derived class 'is a(n)' object of
the base class

• Example:
– an UnderGrad is a Student

– a Mammal is an Animal

• A derived object has all of the characteristics of
the base class

7

What Does a Child Have?

An object of the derived class has:
• all members defined in child class
• all members declared in parent class

An object of the derived class can use:
• all public members defined in child class
• all public members defined in parent

class

8

15.2
• Protected Members and Class

Access

9

Protected Members and
Class Access
• protected member access specification:

like private, but accessible by objects of
derived class

• Class access specification: determines
how private, protected, and public
members of base class are inherited by the
derived class

10

Class Access Specifiers

1) public – object of derived class can be
treated as object of base class (not vice-versa)

2) protected – more restrictive than public,
but allows derived classes to know details of
parents

3) private – prevents objects of derived class
from being treated as objects of base class.

11

Inheritance vs. Access

private: x
protected: y
public: z

private: x
protected: y
public: z

private: x
protected: y
public: z

Base class members

x is inaccessible
private: y
private: z

x is
inaccessible
protected: y
protected: z

x is inaccessible
protected: y
public: z

How inherited base class
members

appear in derived class
private
base class

protecte
d

base class

public
base class

12

More Inheritance vs. Access

private members:
 char letter;
 float score;
 void calcGrade();
public members:
 void setScore(float);
 float getScore();
 char getLetter();

class Grade

private members:
 int numQuestions;
 float pointsEach;
 int numMissed;
public members:
 Test(int, int);

class Test : public Grade

When Test class inherits
from Grade class using
public class access, it
looks like this:

private members:
 int numQuestions:
 float pointsEach;
 int numMissed;
public members:
 Test(int, int);
 void setScore(float);
 float getScore();
 float getLetter();

13

More Inheritance vs. Access (2)

private members:
 char letter;
 float score;
 void calcGrade();
public members:
 void setScore(float);
 float getScore();
 char getLetter();

class Grade

private members:
 int numQuestions;
 float pointsEach;
 int numMissed;
public members:
 Test(int, int);

When Test class inherits
from Grade class using
protected class access, it
looks like this:

private members:
 int numQuestions:
 float pointsEach;
 int numMissed;
public members:
 Test(int, int);
protected members:
 void setScore(float);
 float getScore();
 float getLetter();

class Test : protected Grade

14

More Inheritance vs. Access (3)

private members:
 int numQuestions:
 float pointsEach;
 int numMissed;
 void setScore(float);
 float getScore();
 float getLetter();
public members:
 Test(int, int);

private members:
 char letter;
 float score;
 void calcGrade();
public members:
 void setScore(float);
 float getScore();
 char getLetter();

class Grade

private members:
 int numQuestions;
 float pointsEach;
 int numMissed;
public members:
 Test(int, int);

When Test class inherits
from Grade class using
private class access, it
looks like this:

class Test : private Grade

15

15.3
• Constructors and Destructors in

Base and Derived Classes

16

Constructors and Destructors in Base
and Derived Classes

• Derived classes can have their own
constructors and destructors

• When an object of a derived class is
created, the base class’s constructor is
executed first, followed by the derived
class’s constructor

• When an object of a derived class is
destroyed, its destructor is called first, then
that of the base class

17

Constructors and Destructors in Base
and Derived Classes

18 19

Program 5-14 (Continued)

20

Passing Arguments to
Base Class Constructor

• Allows selection between multiple base
class constructors

• Specify arguments to base constructor on
derived constructor heading:
 Square::Square(int side) :
 Rectangle(side, side)

• Can also be done with inline constructors
• Must be done if base class has no default

constructor

21

Passing Arguments to
Base Class Constructor

Square::Square(int side):Rectangle(side,side)

derived class constructor base class constructor

derived constructor
parameter

base constructor
parameters

22

15.4
• Redefining Base Class

Functions

23

Redefining Base Class Functions

• Redefining function: function in a derived
class that has the same name and
parameter list as a function in the base
class

• Typically used to replace a function in base
class with different actions in derived class

24

Redefining Base Class Functions

• Not the same as overloading – with
overloading, parameter lists must be
different

• Objects of base class use base class
version of function; objects of derived class
use derived class version of function

25

Base Class

Note setScore function

26

Redefined setScore function

Derived Class

27

From Program 15-7

28

Problem with Redefining

• Consider this situation:
– Class BaseClass defines functions x() and y().
x() calls y().

– Class DerivedClass inherits from BaseClass and
redefines function y().

– An object D of class DerivedClass is created and
function x() is called.

– When x() is called, which y() is used, the one
defined in BaseClass or the the redefined one in
DerivedClass?

29

Problem with Redefining
BaseClass

DerivedClass

void X();
void Y();

void Y();

DerivedClass D;
D.X();

Object D invokes function X()
In BaseClass. Function X()
invokes function Y() in BaseClass, not
function Y() in DerivedClass,
because function calls are bound at
compile time. This is static
binding.

30

15.5
• Class Hierarchies

31

Class Hierarchies

• A base class can be derived from another
base class.

32

Class Hierarchies

• Consider the GradedActivity, FinalExam,
PassFailActivity, PassFailExam hierarchy in
Chapter 15.

33

15.6
• Polymorphism and Virtual

Member Functions

34

Polymorphism and
Virtual Member Functions

• Virtual member function: function in base class
that expects to be redefined in derived class

• Function defined with key word virtual:
virtual void Y() {...}

• Supports dynamic binding: functions bound at
run time to function that they call

• Without virtual member functions, C++ uses
static (compile time) binding

35

Consider this function (from Program 15-9)

Because the parameter in the displayGrade function is a GradedActivity
reference variable, it can reference any object that is derived from
GradedActivity. That means we can pass a GradedActivity object, a
FinalExam object, a PassFailExam object, or any other object that is
derived from GradedActivity.

A problem occurs in Program 15-10 however...

36 37

As you can see from the example output, the getLetterGrade member
function returned ‘C’ instead of ‘P’. This is because the GradedActivity
class’s getLetterGrade function was executed instead of the
PassFailActivity class’s version of the function.

38

Static Binding

• Program 15-10 displays 'C' instead of 'P'
because the call to the getLetterGrade
function is statically bound (at compile
time) with the GradedActivity class's
version of the function.

• We can remedy this by making the function
virtual.

39

Virtual Functions

• A virtual function is dynamically bound to
calls at runtime.

• At runtime, C++ determines the type of
object making the call, and binds the
function to the appropriate version of the
function.

40

Virtual Functions

• To make a function virtual, place the virtual
key word before the return type in the base
class's declaration:

virtual char getLetterGrade() const;

• The compiler will not bind the function to
calls. Instead, the program will bind them
at runtime.

41

Updated Version of GradedActivity

The function
is now virtual.

The function also becomes
virtual in all derived classes
automatically!

42

If we recompile our program with the updated versions of the
classes, we will get the right output, shown here: (See Program
15-11 in the book.)

This type of behavior is known as polymorphism. The term
polymorphism means the ability to take many forms.

Program 15-12 demonstrates polymorphism by passing
objects of the GradedActivity and PassFailExam classes to the
displayGrade function.

43

44 45

Polymorphism Requires References or
Pointers
• Polymorphic behavior is only possible

when an object is referenced by a
reference variable or a pointer, as
demonstrated in the displayGrade
function.

46

Base Class Pointers

• Can define a pointer to a base class object
• Can assign it the address of a derived

class object

47

Base Class Pointers

• Base class pointers and references only know
about members of the base class
– So, you can’t use a base class pointer to call a derived

class function

• Redefined functions in derived class will be
ignored unless base class declares the function
virtual

48

Redefining vs. Overriding

• In C++, redefined functions are statically
bound and overridden functions are
dynamically bound.

• So, a virtual function is overridden, and a
non-virtual function is redefined.

49

Virtual Destructors

• It's a good idea to make destructors virtual
if the class could ever become a base
class.

• Otherwise, the compiler will perform static
binding on the destructor if the class ever
is derived from.

• See Program 15-14 for an example

50

15.7
• Abstract Base Classes and

Pure Virtual Functions

51

Abstract Base Classes and
Pure Virtual Functions

• Pure virtual function: a virtual member function
that must be overridden in a derived class that
has objects

• Abstract base class contains at least one pure
virtual function:
 virtual void Y() = 0;

• The = 0 indicates a pure virtual function
• Must have no function definition in the base

class

52

Abstract Base Classes and Pure
Virtual Functions

• Abstract base class: class that can have
no objects. Serves as a basis for derived
classes that may/will have objects

• A class becomes an abstract base class
when one or more of its member functions
is a pure virtual function

53

15.8
• Multiple Inheritance

54

Multiple Inheritance

• A derived class can have more than one base
class

• Each base class can have its own access
specification in derived class's definition:
 class cube : public square,
 public rectSolid;

class
square

class
rectSolid

class
cube

55

Multiple Inheritance

• Arguments can be passed to both base
classes' constructors:
 cube::cube(int side) :
square(side),

 rectSolid(side, side,
side);

• Base class constructors are called in order
given in class declaration, not in order
used in class constructor

56

Multiple Inheritance

• Problem: what if base classes have member
variables/functions with the same name?

• Solutions:
– Derived class redefines the multiply-defined function
– Derived class invokes member function in a particular

base class using scope resolution operator ::
• Compiler errors occur if derived class uses base

class function without one of these solutions

57

Chapter 16:

Exceptions,
Templates, and
the Standard

Template Library
(STL)

58

6.1
• Exceptions

59

Exceptions

• Indicate that something unexpected has
occurred or been detected

• Allow program to deal with the problem in a
controlled manner

• Can be as simple or complex as program
design requires

60

Exceptions - Terminology

• Exception: object or value that signals an
error

• Throw an exception: send a signal that an
error has occurred

• Catch/Handle an exception: process the
exception; interpret the signal

61

Exceptions – Key Words

• throw – followed by an argument, is used to
throw an exception

• try – followed by a block { }, is used to invoke
code that throws an exception

• catch – followed by a block { }, is used to
detect and process exceptions thrown in
preceding try block. Takes a parameter that
matches the type thrown.

62

Exceptions – Flow of Control

1) A function that throws an exception is called from
within a try block

2) If the function throws an exception, the function
terminates and the try block is immediately exited. A
catch block to process the exception is searched for in
the source code immediately following the try block.

3) If a catch block is found that matches the exception
thrown, it is executed. If no catch block that matches
the exception is found, the program terminates.

63

Exceptions – Example (1)

 // function that throws an exception
 int totalDays(int days, int weeks)
 {
 if ((days < 0) || (days > 7))
 throw "invalid number of days";
 // the argument to throw is the
 // character string
 else
 return (7 * weeks + days);
 }

64

Exceptions – Example (2)

 try // block that calls function
 {
 totDays = totalDays(days, weeks);
 cout << "Total days: " << days;
 }
 catch (char *msg) // interpret
 // exception

 {
 cout << "Error: " << msg;
 }

65

Exceptions – What Happens

1) try block is entered. totalDays function is
called

2) If 1st parameter is between 0 and 7, total
number of days is returned and catch block is
skipped over (no exception thrown)

3) If exception is thrown, function and try block
are exited, catch blocks are scanned for 1st
one that matches the data type of the thrown
exception. catch block executes

66

From Program 16-1

67

From Program 16-1

68

What Happens in theTry/Catch
Construct

69

What if no exception is thrown?

70

Exceptions - Notes

• Predefined functions such as new may
throw exceptions

• The value that is thrown does not need to
be used in catch block.
– in this case, no name is needed in catch

parameter definition
– catch block parameter definition does need

the type of exception being caught

71

Exception Not Caught?

• An exception will not be caught if
– it is thrown from outside of a try block
– there is no catch block that matches the data

type of the thrown exception
• If an exception is not caught, the program

will terminate

72

Exceptions and Objects

• An exception class can be defined in a
class and thrown as an exception by a
member function

• An exception class may have:
– no members: used only to signal an error
– members: pass error data to catch block

• A class can have more than one exception
class

73

74

Contents of Rectangle.h (Version1) (Continued)

75

76 77

78

Program 16-2 (Continued)

79

What Happens After catch Block?

• Once an exception is thrown, the program
cannot return to throw point. The function
executing throw terminates (does not
return), other calling functions in try block
terminate, resulting in unwinding the stack

• If objects were created in the try block and
an exception is thrown, they are destroyed.

80

Nested try Blocks

• try/catch blocks can occur within an
enclosing try block

• Exceptions caught at an inner level can be
passed up to a catch block at an outer level:
 catch ()
 {
 ...
 throw; // pass exception up
 } // to next level

81

16.2
• Function Templates

82

Function Templates

• Function template: a pattern for a function
that can work with many data types

• When written, parameters are left for the
data types

• When called, compiler generates code for
specific data types in function call

83

Function Template Example
template <class T>

T times10(T num)
{
 return 10 * num;
}

template
prefix

generic
data type

type
parameter

What gets generated when
times10 is called with an int:

What gets generated when times10 is
called with a double:

int times10(int num)
{
 return 10 * num;
}

double times10(double num)
{
 return 10 * num;
}

84

Function Template Example

template <class T>

T times10(T num)
{
 return 10 * num;
}

• Call a template function in the usual manner:
 int ival = 3;
 double dval = 2.55;
 cout << times10(ival); // displays 30
 cout << times10(dval); // displays 25.5

85

Function Template Notes

• Can define a template to use multiple data types:
 template<class T1, class T2>

• Example:
template<class T1, class T2> // T1 and T2 will be

double mpg(T1 miles, T2 gallons) // replaced in the

{ // called function

 return miles / gallons // with the data

} // types of the

 // arguments

86

Function Template Notes

• Function templates can be overloaded Each
template must have a unique parameter list
 template <class T>

 T sumAll(T num) ...

 template <class T1, class T2>

 T1 sumall(T1 num1, T2 num2) ...

87

Function Template Notes

• All data types specified in template prefix
must be used in template definition

• Function calls must pass parameters for
all data types specified in the template
prefix

• Like regular functions, function templates
must be defined before being called

88

Function Template Notes

• A function template is a pattern
• No actual code is generated until the function

named in the template is called
• A function template uses no memory
• When passing a class object to a function

template, ensure that all operators in the
template are defined or overloaded in the class
definition

89

16.3
• Where to Start When Defining

Templates

90

Where to Start
When Defining Templates
• Templates are often appropriate for

multiple functions that perform the same
task with different parameter data types

• Develop function using usual data types
first, then convert to a template:
– add template prefix
– convert data type names in the function to a

type parameter (i.e., a T type) in the template

91

16.4
• Class Templates

92

Class Templates

• Classes can also be represented by
templates. When a class object is created,
type information is supplied to define the
type of data members of the class.

• Unlike functions, classes are instantiated
by supplying the type name (int, double,
string, etc.) at object definition

93

Class Template Example
template <class T>
class grade
{
 private:
 T score;
 public:
 grade(T);
 void setGrade(T);
 T getGrade()
};

94

Class Template Example

• Pass type information to class template
when defining objects:
 grade<int> testList[20];

 grade<double> quizList[20];

• Use as ordinary objects once defined

95

Class Templates and Inheritance

• Class templates can inherit from other class templates:
template <class T>
class Rectangle
 { ... };
template <class T>
class Square : public Rectangle<T>
 { ... };

• Must use type parameter T everywhere base class
name is used in derived class

96

16.5
• Introduction to the Standard

Template Library

97

Introduction to the
Standard Template Library

• Standard Template Library (STL): a library
containing templates for frequently used
data structures and algorithms

• Not supported by many older compilers

98

Standard Template Library

• Two important types of data structures in
the STL:
– containers: classes that stores data and

imposes some organization on it

– iterators: like pointers; mechanisms for
accessing elements in a container

99

Containers

• Two types of container classes in STL:
– sequence containers: organize and access

data sequentially, as in an array. These
include vector, dequeue, and list

– associative containers: use keys to allow
data elements to be quickly accessed.
These include set, multiset, map, and
multimap

100

Iterators

• Generalization of pointers, used to
access information in containers

• Four types:
– forward (uses ++)
– bidirectional (uses ++ and --)
– random-access
– input (can be used with cin and istream

objects)
– output (can be used with cout and
ostream objects)

101

Algorithms

• STL contains algorithms implemented as
function templates to perform operations
on containers.

• Requires algorithm header file
• algorithm includes

binary_search count
for_each find
find_if max_element
min_element random_shuffle
sort and others

102

