
W E E K 7

Files and
Exceptions &

Lists and
Tuples

Topics
• Introduction to File Input and Output
• Using Loops to Process Files
• Processing Records
• Exceptions

Introduction to File Input and
Output

• For program to retain data between the
times it is run, you must save the data
• Data is saved to a file, typically on computer

disk
• Saved data can be retrieved and used at a

later time
• “Writing data to”: saving data on a file
• Output file: a file that data is written to

Introduction to File Input and
Output (cont’d.)

• “Reading data from”: process of
retrieving data from a file

• Input file: a file from which data is read
• Three steps when a program uses a file

• Open the file
• Process the file
• Close the file

Types of Files and File Access
Methods

• In general, two types of files
• Text file: contains data that has been encoded

as text
• Binary file: contains data that has not been

converted to text
• Two ways to access data stored in file

• Sequential access: file read sequentially from
beginning to end, can’t skip ahead

• Direct access: can jump directly to any piece
of data in the file

Filenames and File Objects
• Filename extensions: short sequences

of characters that appear at the end of a
filename preceded by a period
• Extension indicates type of data stored in the

file
• File object: object associated with a

specific file
• Provides a way for a program to work with the

file: file object referenced by a variable

Filenames and File Objects (cont’d.) Opening a File
• open function: used to open a file

• Creates a file object and associates it with a file
on the disk

• General format:
• file_object = open(filename, mode)

• Mode: string specifying how the file will
be opened
• Example: reading only ('r'), writing ('w'),

and appending ('a')

Specifying the Location of a File

• If open function receives a filename that
does not contain a path, assumes that
file is in same directory as program

• If program is running and file is created,
it is created in the same directory as the
program

Can specify alternative path and file name in
the open function argument

• Prefix the path string literal with the letter r

Writing Data to a File
• Method: a function that belongs to an

object
• Performs operations using that object

• File object’s write method used to
write data to the file
• Format: file_variable.write(string)

• File should be closed using file object
close method
• Format: file_variable.close()

Reading Data From a File
• read method: file object method that

reads entire file contents into memory
• Only works if file has been opened for reading
• Contents returned as a string

• readline method: file object method
that reads a line from the file
• Line returned as a string, including '\n'

• Read position: marks the location of the
next item to be read from a file

Concatenating a Newline to and
Stripping it From a String

• In most cases, data items written to a file
are values referenced by variables
• Usually necessary to concatenate a '\n' to

data before writing it
• Carried out using the + operator in the argument of

the write method

• In many cases need to remove '\n'
from string after it is read from a file
• rstrip method: string method that strips

specific characters from end of the string

Appending Data to an Existing File

• When open file with 'w' mode, if the file
already exists it is overwritten

• To append data to a file use the 'a'
mode
• If file exists, it is not erased, and if it does not

exist it is created
• Data is written to the file at the end of the

current contents

Writing and Reading Numeric Data

• Numbers must be converted to strings
before they are written to a file

• str function: converts value to string
• Number are read from a text file as

strings
• Must be converted to numeric type in order to

perform mathematical operations
• Use int and float functions to convert string

to numeric value

Using Loops to Process Files
• Files typically used to hold large

amounts of data
• Loop typically involved in reading from and

writing to a file
• Often the number of items stored in file

is unknown
• The readline method uses an empty string

as a sentinel when end of file is reached
• Can write a while loop with the condition
 while line != ''

Using Python’s for Loop to Read
Lines

• Python allows the programmer to write
a for loop that automatically reads
lines in a file and stops when end of file
is reached
• Format: for line in file_object:
• statements
• The loop iterates once over each line in the file

Processing Records
• Record: set of data that describes one

item
• Field: single piece of data within a

record
• Write record to sequential access file by

writing the fields one after the other
• Read record from sequential access file

by reading each field until record
complete

Processing Records (cont’d.)
• When working with records, it is also

important to be able to:
• Add records
• Display records
• Search for a specific record
• Modify records
• Delete records

Exceptions
• Exception: error that occurs while a

program is running
• Usually causes program to abruptly halt

• Traceback: error message that gives
information regarding line numbers that
caused the exception
• Indicates the type of exception and brief

description of the error that caused exception
to be raised

Exceptions (cont’d.)
• Many exceptions can be prevented by

careful coding
• Example: input validation
• Usually involve a simple decision construct

• Some exceptions cannot be avoided by
careful coding
• Examples

• Trying to convert non-numeric string to an integer
• Trying to open for reading a file that doesn’t exist

Exceptions (cont’d.)
• Exception handler: code that responds

when exceptions are raised and
prevents program from crashing
– In Python, written as try/except statement

• General format: try:
 statements

 except exceptionName:
 statements

• Try suite: statements that can potentially raise an
exception

• Handler: statements contained in except block

Exceptions (cont’d.)
• If statement in try suite raises exception:

• Exception specified in except clause:
• Handler immediately following except clause executes
• Continue program after try/except statement

• Other exceptions:
• Program halts with traceback error message

• If no exception is raised, handlers are
skipped

Handling Multiple Exceptions
• Often code in try suite can throw more

than one type of exception
• Need to write except clause for each type of

exception that needs to be handled
• An except clause that does not list a

specific exception will handle any
exception that is raised in the try suite
• Should always be last in a series of except

clauses

Displaying an Exception’s Default
Error Message

• Exception object: object created in
memory when an exception is thrown
• Usually contains default error message

pertaining to the exception
• Can assign the exception object to a variable

in an except clause
• Example: except ValueError as err:

• Can pass exception object variable to print
function to display the default error message

The else Clause
• try/except statement may include an

optional else clause, which appears after all
the except clauses
• Aligned with try and except clauses
• Syntax similar to else clause in decision structure
• Else suite: block of statements executed after

statements in try suite, only if no exceptions were
raised

• If exception was raised, the else suite is skipped

The finally Clause
• try/except statement may include an

optional finally clause, which appears
after all the except clauses
• Aligned with try and except clauses
• General format: finally:
• statements
• Finally suite: block of statements after the finally

clause
• Execute whether an exception occurs or not
• Purpose is to perform cleanup before exiting

What If an Exception Is Not
Handled?

• Two ways for exception to go
unhandled:
• No except clause specifying exception of the

right type
• Exception raised outside a try suite

• In both cases, exception will cause the
program to halt
• Python documentation provides information

about exceptions that can be raised by
different functions

Summary
• This chapter covered:

• Types of files and file access methods
• Filenames and file objects
• Writing data to a file
• Reading data from a file and determining when

the end of the file is reached
• Processing records
• Exceptions, including:

• Traceback messages
• Handling exceptions

Topics
• Sequences
• Introduction to Lists
• List Slicing
• Finding Items in Lists with the in

Operator
• List Methods and Useful Built-in

Functions

Topics (cont’d.)
• Copying Lists
• Processing Lists
• Two-Dimensional Lists
• Tuples
• Plotting List Data with the matplotlib

Package

Sequences
• Sequence: an object that contains

multiple items of data
• The items are stored in sequence one after

another
• Python provides different types of

sequences, including lists and tuples
• The difference between these is that a list is

mutable and a tuple is immutable

Introduction to Lists
• List: an object that contains multiple data

items
• Element: An item in a list
• Format: list = [item1, item2, etc.]
• Can hold items of different types

• print function can be used to display an
entire list

• list() function can convert certain types of
objects to lists

Introduction to Lists (cont’d.)

The Repetition Operator and
Iterating over a List

• Repetition operator: makes multiple copies of
a list and joins them together
• The * symbol is a repetition operator when applied to

a sequence and an integer
• Sequence is left operand, number is right

• General format: list * n

• You can iterate over a list using a for loop
• Format: for x in list:

Indexing
• Index: a number specifying the position

of an element in a list
• Enables access to individual element in list
• Index of first element in the list is 0, second

element is 1, and n’th element is n-1
• Negative indexes identify positions relative to

the end of the list
• The index -1 identifies the last element, -2 identifies

the next to last element, etc.

The len function
• An IndexError exception is raised if an

invalid index is used
• len function: returns the length of a

sequence such as a list
• Example: size = len(my_list)
• Returns the number of elements in the list, so the

index of last element is len(list)-1
• Can be used to prevent an IndexError exception

when iterating over a list with a loop

Lists Are Mutable
• Mutable sequence: the items in the sequence

can be changed
• Lists are mutable, and so their elements can be

changed
• An expression such as
• list[1] = new_value can be used to

assign a new value to a list element
• Must use a valid index to prevent raising of an
IndexError exception

Concatenating Lists
• Concatenate: join two things together
• The + operator can be used to

concatenate two lists
– Cannot concatenate a list with another data

type, such as a number
• The += augmented assignment operator

can also be used to concatenate lists

List Slicing
• Slice: a span of items that are taken from a

sequence
• List slicing format: list[start : end]
• Span is a list containing copies of elements from
start up to, but not including, end

• If start not specified, 0 is used for start index
• If end not specified, len(list) is used for end index

• Slicing expressions can include a step value and
negative indexes relative to end of list

Finding Items in Lists with the in
Operator

• You can use the in operator to determine
whether an item is contained in a list
• General format: item in list
• Returns True if the item is in the list, or False if it is

not in the list
• Similarly you can use the not in operator to

determine whether an item is not in a list

List Methods and Useful Built-in
Functions

• append(item): used to add items to a list –
item is appended to the end of the existing
list

• index(item): used to determine where an
item is located in a list
• Returns the index of the first element in the list

containing item
• Raises ValueError exception if item not in the list

List Methods and Useful Built-in
Functions (cont’d.)

• insert(index, item): used to insert
item at position index in the list

• sort(): used to sort the elements of
the list in ascending order

• remove(item): removes the first
occurrence of item in the list

• reverse(): reverses the order of the
elements in the list

List Methods and Useful Built-in
Functions (cont’d.)

• del statement: removes an element from a
specific index in a list
• General format: del list[i]

• min and max functions: built-in functions
that returns the item that has the lowest or
highest value in a sequence
• The sequence is passed as an argument

Copying Lists
• To make a copy of a list you must copy

each element of the list
• Two methods to do this:

• Creating a new empty list and using a for loop to
add a copy of each element from the original list to
the new list

• Creating a new empty list and concatenating the
old list to the new empty list

Copying Lists (cont’d.) Processing Lists
• List elements can be used in calculations
• To calculate total of numeric values in a list

use loop with accumulator variable
• To average numeric values in a list:

• Calculate total of the values
• Divide total of the values by len(list)

• List can be passed as an argument to a
function

Processing Lists (cont’d.)
• A function can return a reference to a list
• To save the contents of a list to a file:

• Use the file object’s writelines method
• Does not automatically write \n at then end of each item

• Use a for loop to write each element and \n
• To read data from a file use the file object’s
readlines method

Two-Dimensional Lists
• Two-dimensional list: a list that contains

other lists as its elements
• Also known as nested list
• Common to think of two-dimensional lists as having

rows and columns
• Useful for working with multiple sets of data

• To process data in a two-dimensional list
need to use two indexes

• Typically use nested loops to process

Two-Dimensional Lists (cont’d.) Two-Dimensional Lists (cont’d.)

Tuples
• Tuple: an immutable sequence

• Very similar to a list
• Once it is created it cannot be changed
• Format: tuple_name = (item1, item2)
• Tuples support operations as lists

• Subscript indexing for retrieving elements
• Methods such as index
• Built in functions such as len, min, max
• Slicing expressions
• The in, +, and * operators

Tuples (cont’d.)
• Tuples do not support the methods:

• append
• remove
• insert
• reverse
• sort

Tuples (cont’d.)
• Advantages for using tuples over lists:

• Processing tuples is faster than processing
lists

• Tuples are safe
• Some operations in Python require use of

tuples
• list() function: converts tuple to list
• tuple() function: converts list to tuple

Plotting Data with matplotlib
• The matplotlib package is a library for

creating two-dimensional charts and graphs.

• It is not part of the standard Python library, so
you will have to install it separately, after you
have installed Python on your system.

Plotting Data with matplotlib
• To install matplotlib on a Windows system, open a

Command Prompt window and enter this command:

• To install matplotlib on a Mac or Linux system,
open a Terminal window and enter this command:

• See Appendix F in your textbook for more
information about packages and the pip utility.

pip install matplotlib

sudo pip3 install matplotlib

Plotting Data with matplotlib
• To verify the package was installed, start IDLE and

enter this command:

• If you don't see any error messages, you can assume
the package was properly installed.

>>> import matplotlib

Plotting Data with matplotlib
• The matplotlib package contains a module

named pyplot that you will need to import.
• Use the following import statement to import

the module and create an alias named plt:

import matplotlib.pyplot as plt

For more information about the import statement, see Appendix E in your textbook.

Plotting a Line Graph with the plot
Function

• Use the plot function to create a line graph that
connects a series of points with straight lines.

• The line graph has a horizontal X axis, and a vertical
Y axis.

• Each point in the graph is located at a (X,Y)
coordinate.

Plotting a Line Graph with the plot
Function

Program 7-19 (line_graph1.py)
 1 # This program displays a simple line graph.
 2 import matplotlib.pyplot as plt
 3
 4 def main():
 5 # Create lists with the X and Y coordinates of each data point.
 6 x_coords = [0, 1, 2, 3, 4]
 7 y_coords = [0, 3, 1, 5, 2]
 8
 9 # Build the line graph.
10 plt.plot(x_coords, y_coords)
11
12 # Display the line graph.
13 plt.show()
14
15 # Call the main function.
16 main()

Plotting a Line Graph with the plot
Function

• You can change the lower and upper limits of the X
and Y axes by calling the xlim and ylim functions.
Example:

• This code does the following:
• Causes the X axis to begin at 1 and end at 100
• Causes the Y axis to begin at 10 and end at 50

plt.xlim(xmin=1, xmax=100)
plt.ylim(ymin=10, ymax=50)

Plotting a Line Graph with the plot
Function

• You can customize each tick mark's label with the
xticks and yticks functions.

• These functions each take two lists as arguments.
• The first argument is a list of tick mark locations
• The second argument is a list of labels to display at the

specified locations.

plt.xticks([0, 1, 2, 3, 4],
 ['2016', '2017', '2018', '2019', '2020'])
plt.yticks([0, 1, 2, 3, 4, 5],
 ['$0m', '$1m', '$2m', '$3m', '$4m', '$5m'])

Program 7-24
 1 # This program displays a simple line graph.
 2 import matplotlib.pyplot as plt
 3
 4 def main():
 5 # Create lists with the X,Y coordinates of each data point.
 6 x_coords = [0, 1, 2, 3, 4]
 7 y_coords = [0, 3, 1, 5, 2]
 8
 9 # Build the line graph.
10 plt.plot(x_coords, y_coords, marker='o')
11
12 # Add a title.
13 plt.title('Sales by Year')
14
15 # Add labels to the axes.
16 plt.xlabel('Year')
17 plt.ylabel('Sales')
18

Continued…

Program 7-24 (continued)

19 # Customize the tick marks.
20 plt.xticks([0, 1, 2, 3, 4],
21 ['2016', '2017', '2018', '2019', '2020'])
22 plt.yticks([0, 1, 2, 3, 4, 5],
23 ['$0m', '$1m', '$2m', '$3m', '$4m', '$5m'])
24
25 # Add a grid.
26 plt.grid(True)
27
28 # Display the line graph.
29 plt.show()
30
31 # Call the main function.
32 main()

Output of Program 7-24
Displayed by the

title() function.

Displayed by the
xlabel() function.

Displayed by the
ylabel() function.

Displayed by the
xticks() function.

Displayed by the
yticks() function.

Plotting a Bar Chart
• Use the bar function in the
matplotlib.pyplot module to create a bar
chart.

• The function needs two lists: one with the X
coordinates of each bar's left edge, and
another with the heights of each bar, along
the Y axis.

Plotting a Bar Chart

left_edges = [0, 10, 20, 30, 40]
heights = [100, 200, 300, 400, 500]

plt.bar(left_edges, heights)
plt.show()

Plotting a Bar Chart
• The default width of each bar in a bar graph is 0.8 along the X

axis.
• You can change the bar width by passing a third argument to

the bar function.

left_edges = [0, 10, 20, 30, 40]
heights = [100, 200, 300, 400, 500]
bar_width = 5

plt.bar(left_edges, heights, bar_width)
plt.show()

Plotting a Bar Chart
• The bar function has a color parameter that you can

use to change the colors of the bars.
• The argument that you pass into this parameter is a

tuple containing a series of color codes.

Color Code Corresponding Color
'b' Blue
'g' Green
'r' Red
'c' Cyan
'm' Magenta
'y' Yellow
'k' Black
'w' White

Plotting a Bar Chart
• Example of how to pass a tuple of color codes as a

keyword argument:

• The colors of the bars in the resulting bar chart will
be as follows:
• The first bar will be red.
• The second bar will be green.
• The third bar will be blue.
• The fourth bar will be white.
• The fifth bar will be black.

plt.bar(left_edges, heights, color=('r', 'g', 'b', 'w', 'k'))

Plotting a Bar Chart
• Use the xlabel and ylabel functions to add labels

to the X and Y axes.

• Use the xticks function to display custom tick mark
labels along the X axis

• Use the yticks function to display custom tick mark
labels along the Y axis.

Plotting a Pie Chart
• You use the pie function in the matplotlib.pyplot

module to create a pie chart.

• When you call the pie function, you pass a list of
values as an argument.
• The sum of the values will be used as the value of the whole.
• Each element in the list will become a slice in the pie chart.
• The size of a slice represents that element's value as a

percentage of the whole.

Plotting a Pie Chart
• Example

values = [20, 60, 80, 40]
plt.pie(values)
plt.show()

Plotting a Pie Chart
• The pie function has a labels parameter that you

can use to display labels for the slices in the pie
chart.

• The argument that you pass into this parameter is a
list containing the desired labels, as strings.

Plotting a Pie Chart
• Example
sales = [100, 400, 300, 600]
slice_labels = ['1st Qtr', '2nd Qtr', '3rd Qtr', '4th Qtr']
plt.pie(sales, labels=slice_labels)
plt.title('Sales by Quarter')
plt.show()

Plotting a Pie Chart
• The pie function automatically changes the color of

the slices, in the following order:
• blue, green, red, cyan, magenta, yellow, black, and white.

• You can specify a different set of colors, however, by
passing a tuple of color codes as an argument to the
pie function's colors parameter:

• When this statement executes, the colors of the slices in the resulting
pie chart will be red, green, blue, white, and black.

plt.pie(values, colors=('r', 'g', 'b', 'w', 'k'))

Summary
• This chapter covered:

• Lists, including:
• Repetition and concatenation operators
• Indexing
• Techniques for processing lists
• Slicing and copying lists
• List methods and built-in functions for lists
• Two-dimensional lists

• Tuples, including:
• Immutability
• Difference from and advantages over lists

• Plotting charts and graphs with the matplotlib
Package

