Topics

Introduction to File Input and Output

WEEK 7] i
. » Using Loops to Process Files
Files and p .
) * Processing Records
Exceptions & « Exceptions
Lists and P
Tuples
Introduction to File Input and o | |
igure 6-1 Writing data to a file
Output Dataiscopie_dfrom
* For program to retain data between the by rate [18.65

times it is run, you must save the data

 Data is saved to a file, typically on computer
disk

» Saved data can be retrieved and used at a
later time

» “Writing data to”: saving data on a file
e Output file: a file that data is written to

Variable
employee id 7451Z

Variable -
employee name |Cindy Chandler

Gy Crander 4512 i 65—

’//) T D

Afile on the disk (_ >

\/

Introduction to File Input and
Output (cont’d.)

» “Reading data from”: process of
retrieving data from a file

e Input file: a file from which data is read

* Three steps when a program uses a file
* Open the file
* Process the file
* Close the file

Figure 6-2 Reading data from a file

Data is copied from
the file to RAM, and
referenced by variables.

Variable Ij

pay_rate 1 865

Variable

employee id 7451Z

Variabl -

e;;josee_name Cindy Chandler 4—\
Gy Crandlr [74512 g 57—

P

Afieonthedisk C D

_/

Types of Files and File Access
Methods

* In general, two types of files
» Text file: contains data that has been encoded
as text
« Binary file: contains data that has not been
converted to text

* Two ways to access data stored in file
» Sequential access: file read sequentially from
beginning to end, can’t skip ahead
» Direct access: can jump directly to any piece
of data in the file

Filenames and File Objects

* Filename extensions: short sequences
of characters that appear at the end of a
filename preceded by a period
» Extension indicates type of data stored in the

file

* File object: object associated with a
specific file
* Provides a way for a program to work with the

file: file object referenced by a variable

Filenames and File Objects (cont’d.)

Figure 6-4 A variable name references a file object that is associated with a file

variable_name ——————| File object

G Cranden 7452 i

\>
} Afile on the disk P
— /

(C D))

Opening a File

* open function: used to open a file

» Creates a file object and associates it with a file
on the disk
» General format:

e file object = open(filename, mode)
» Mode: string specifying how the file will
be opened

e Example: readingonly (' r"), writing ('w"'),
and appending ('a"')

Specifying the Location of a File

* If open function receives a filename that
does not contain a path, assumes that
file is in same directory as program

* If program is running and file is created,
it is created in the same directory as the
program

Can specify alternative path and file name in

the open function argument
« Prefix the path string literal with the letter r

Writing Data to a File

* Method: a function that belongs to an
object
» Performs operations using that object
* File object’s write method used to
write data to the file
« Format: file variable.write (string)
* File should be closed using file object

close method
« Format: file variable.close ()

Reading Data From a File

e read method: file object method that
reads entire file contents into memory
* Only works if file has been opened for reading
» Contents returned as a string

e readline method: file object method
that reads a line from the file
* Line returned as a string, including '\n'

* Read position: marks the location of the
next item to be read from a file

Concatenating a Newline to and
Stripping it From a String

* In most cases, data items written to a file
are values referenced by variables
» Usually necessary to concatenate a '\n"' to

data before writing it
« Carried out using the + operator in the argument of
the write method

* In many cases need to remove '\n'

from string after it is read from a file

« rstrip method: string method that strips
specific characters from end of the string

Appending Data to an Existing File

 When open file with 'w' mode, if the file
already exists it is overwritten

» To append data to a file use the 'a'

mode

* If file exists, it is not erased, and if it does not
exist it is created

» Data is written to the file at the end of the
current contents

Writing and Reading Numeric Data

* Numbers must be converted to strings
before they are written to a file

e str function: converts value to string

 Number are read from a text file as
strings
* Must be converted to numeric type in order to
perform mathematical operations
« Use int and float functions to convert string
to numeric value

Using Loops to Process Files

* Files typically used to hold large
amounts of data
* Loop typically involved in reading from and
writing to a file

» Often the number of items stored in file
is unknown
» The readline method uses an empty string

as a sentinel when end of file is reached

» Can write a while loop with the condition
while line != "!

Open the file.

!

]
readline to read the /
/" first line from the file. /

No —
alse / /
!_|Process the item that was Use readline to read the /

just read from the file. 7 nextline from the file. /

Close the file.

!

Using Python’s for Loop to Read
Lines

* Python allows the programmer to write
a for loop that automatically reads
lines in a file and stops when end of file

is reached

« Format: for Iine in file object:

. statements

» The loop iterates once over each line in the file

Processing Records

Record: set of data that describes one
item

Field: single piece of data within a
record

Write record to sequential access file by
writing the fields one after the other

Read record from sequential access file
by reading each field until record
complete

Processing Records (cont’d.)

* When working with records, it is also

important to be able to:
* Add records

 Display records

» Search for a specific record
* Modify records

* Delete records

Exceptions

» Exception: error that occurs while a
program is running
* Usually causes program to abruptly halt

» Traceback: error message that gives
information regarding line numbers that

caused the exception

* Indicates the type of exception and brief
description of the error that caused exception
to be raised

Exceptions (cont’d.)

* Many exceptions can be prevented by

careful coding
« Example: input validation
» Usually involve a simple decision construct

 Some exceptions cannot be avoided by

careful coding

+ Examples
* Trying to convert non-numeric string to an integer
* Trying to open for reading a file that doesn’t exist

Exceptions (cont’d.)

* Exception handler: code that responds
when exceptions are raised and

prevents program from crashing
— In Python, written as try/except statement

» General format: try:
statements
except exceptionName:
Statements

» Try suite: statements that can potentially raise an
exception
« Handler: statements contained in except block

Exceptions (cont’d.)

 If statement in try suite raises exception:

» Exception specified in except clause:
+ Handler immediately following except clause executes
» Continue program after try/except statement

» Other exceptions:
* Program halts with traceback error message
* If no exception is raised, handlers are
skipped

Handling Multiple Exceptions

* Often code in try suite can throw more

than one type of exception
* Need to write except clause for each type of
exception that needs to be handled

 An except clause that does not list a

specific exception will handle any

exception that is raised in the try suite
« Should always be last in a series of except
clauses

Displaying an Exception’s Default
Error Message

» Exception object: object created in
memory when an exception is thrown
» Usually contains default error message
pertaining to the exception
» Can assign the exception object to a variable
in an except clause
« Example: except ValueError as err:
« Can pass exception object variable to print
function to display the default error message

The else Clause

* try/except statement may include an
optional else clause, which appears after all
the except clauses

« Aligned with try and except clauses

« Syntax similar to e1se clause in decision structure

+ Else suite: block of statements executed after
statements in try suite, only if no exceptions were

raised
* If exception was raised, the else suite is skipped

The £finally Clause

* try/except statement may include an
optional £inally clause, which appears
after all the except clauses

« Aligned with try and except clauses
e General format: finally:

statements

 Finally suite: block of statements after the finally

clause
» Execute whether an exception occurs or not
» Purpose is to perform cleanup before exiting

What If an Exception Is Not
Handled?

Two ways for exception to go

unhandled:

* No except clause specifying exception of the
right type

* Exception raised outside a try suite

In both cases, exception will cause the

program to halit

» Python documentation provides information
about exceptions that can be raised by
different functions

Summary

* This chapter covered:

Types of files and file access methods
Filenames and file objects
Writing data to a file
Reading data from a file and determining when
the end of the file is reached
Processing records
Exceptions, including:
» Traceback messages
* Handling exceptions

Topics

Sequences

Introduction to Lists

List Slicing

Finding Items in Lists with the in
Operator

List Methods and Useful Built-in
Functions

Topics (cont’d.)

* Copying Lists

* Processing Lists

 Two-Dimensional Lists

* Tuples

» Plotting List Data with the matplotlib
Package

Sequences

» Sequence: an object that contains

multiple items of data
» The items are stored in sequence one after
another

* Python provides different types of

sequences, including lists and tuples
* The difference between these is that a list is
mutable and a tuple is immutable

Introduction to Lists

* List: an object that contains multiple data
items
* Element: Anitem in a list
e Format: 1ist = [iteml, item2, etc.]
» Can hold items of different types

e print function can be used to display an
entire list

* 1ist () function can convert certain types of
objects to lists

Introduction to Lists (cont’d.)

Figure 7-1 A list of integers

Figure 7-2 A list of strings

names—>| Molly |Steven| Will | Alicia |Adriana|

Figure 7-3 A list holding different types

info — — | Alicia | 27 | 1550.87 |

The Repetition Operator and
Iterating over a List

* Repetition operator: makes multiple copies of
a list and joins them together
« The * symbol is a repetition operator when applied to

a sequence and an integer
» Sequence is left operand, number is right

» General format: 1ist * n

* You can iterate over a list using a for loop
« Format: for x in list:

Indexing

* Index: a number specifying the position
of an element in a list
* Enables access to individual element in list
* Index of first element in the list is 0, second
element is 1, and n’th element is n-1
* Negative indexes identify positions relative to

the end of the list
» The index -1 identifies the last element, -2 identifies
the next to last element, etc.

The len function

 An IndexError exception is raised if an
invalid index is used

* len function: returns the length of a

sequence such as a list

« Example: size = len(my list)

» Returns the number of elements in the list, so the
index of last elementis 1en (1ist) -1

« Can be used to prevent an IndexError exception
when iterating over a list with a loop

Lists Are Mutable

* Mutable sequence: the items in the sequence

can be changed
» Lists are mutable, and so their elements can be

changed
* An expression such as
. list[1l] = new_value can be used to

assign a new value to a list element
* Must use a valid index to prevent raising of an
IndexError exception

Concatenating Lists

» Concatenate: join two things together

* The + operator can be used to

concatenate two lists
— Cannot concatenate a list with another data
type, such as a number

 The += augmented assignment operator
can also be used to concatenate lists

List Slicing

» Slice: a span of items that are taken from a
sequence
o List slicing format: 1ist[start : end]
» Span is a list containing copies of elements from
start up to, but not including, end

- If start not specified, 0 is used for start index
« If end not specified, 1en (1ist) is used for end index

+ Slicing expressions can include a step value and
negative indexes relative to end of list

Finding Items in Lists with the in
Operator

* You can use the in operator to determine

whether an item is contained in a list

« General format: item in Iist

« Returns True if the item is in the list, or False ifitis
not in the list

« Similarly you can use the not in operator to
determine whether an item is not in a list

List Methods and Useful Built-in
Functions

* append (item): used to add items to a list —
itemis appended to the end of the existing
list

e index (item): used to determine where an

item is located in a list

» Returns the index of the first element in the list
containing item

« Raises ValueError exception if i tem notin the list

List Methods and Useful Built-in
Functions (cont’d.)

insert (index, item): used to insert
item at position index in the list

sort (): used to sort the elements of
the list in ascending order

remove (item): removes the first
occurrence of itemin the list

reverse (): reverses the order of the
elements in the list

Table 7-1 A few of the list methods
Method Description
append (item) Adds item to the end of the list.
index(item) Returns the index of the first element whose value is equal to item. A

ValueError exception is raised if item is not found in the list.

insert(index, item) Inserts item into the list at the specified index. When an item is

inserted into a list, the list is expanded in size to accommodate the new
item. The item that was previously at the specified index, and all the
items after it, are shifted by one position toward the end of the list.
No exceptions will occur if you specify an invalid index. If you spec-
ify an index beyond the end of the list, the item will be added to the
end of the list. If you use a negative index that specifies an invalid
position, the item will be inserted at the beginning of the list.

sort() Sorts the items in the list so they appear in ascending order (from the
lowest value to the highest value).

remove (item) Removes the first occurrence of item from the list. A valueError
exception is raised if item is not found in the list.

reverse() Reverses the order of the items in the list.

List Methods and Useful Built-in
Functions (cont’d.)

del statement: removes an element from a
specific index in a list

« General format: del I1ist[i]
min and max functions: built-in functions
that returns the item that has the lowest or

highest value in a sequence
* The sequence is passed as an argument

* To

Copying Lists

make a copy of a list you must copy

each element of the list
* Two methods to do this:

 Creating a new empty list and using a for loop to
add a copy of each element from the original list to
the new list

» Creating a new empty list and concatenating the
old list to the new empty list

Copying Lists (cont’d.)

Figure 7-4 1ist1 and list2 reference the same list

1ist1\
list2 /

Processing Lists

List elements can be used in calculations

To calculate total of numeric values in a list
use loop with accumulator variable

To average numeric values in a list:
 Calculate total of the values

« Divide total of the values by 1en (1ist)

List can be passed as an argument to a
function

Processing Lists (cont’d.)

¢ A function can return a reference to a list

* To save the contents of a list to a file:
« Use the file object’'s writelines method
« Does not automatically write \n at then end of each item
« Use a for loop to write each element and \n

* To read data from a file use the file object’s
readlines method

Two-Dimensional Lists

Two-dimensional list: a list that contains

other lists as its elements

» Also known as nested list

+ Common to think of two-dimensional lists as having
rows and columns

 Useful for working with multiple sets of data

To process data in a two-dimensional list

need to use two indexes

Typically use nested loops to process

Two-Dimensional Lists (cont’d.)

Figure 7-5 A two-dimensional list

Two-Dimensional Lists (cont’d.)

Figure 7-7 Subscripts for each element of the scores list

Column 0 Column 1

Row 0 'Joe" 'Kim'
Row 1 'Sam' 'Sue’
Row 2| 'Kelly' 'Chris’

Column 0 Column1 Column 2

Row 0 | scores[0][0] | scores[0][1] | scores[0][2]

Row 1 | scores[1][0] | scores[1][1] | scores[1][2]

Row 2 | scores[2][0] | scores[2][1] | scores[2][2]

Tuples

e Tuple: an immutable sequence
* Very similar to a list
» Once it is created it cannot be changed
« Format: tuple name = (iteml, item2)
* Tuples support operations as lists
+ Subscript indexing for retrieving elements
» Methods such as index
 Built in functions such as 1en, min, max
« Slicing expressions
e The in, +, and * operators

Tuples (cont’d.)

* Tuples do not support the methods:
e append
e remove
e insert
e reverse
e sOrt

Tuples (cont’d.)

» Advantages for using tuples over lists:
* Processing tuples is faster than processing
lists
* Tuples are safe
* Some operations in Python require use of
tuples

e 1ist () function: converts tuple to list
e tuple () function: converts list to tuple

Plotting Data with matplotlib

e The matplotlib package is a library for
creating two-dimensional charts and graphs.

 Itis not part of the standard Python library, so
you will have to install it separately, after you
have installed Python on your system.

Plotting Data with matplotlib

To install matplotlib on a Windows system, open a
Command Prompt window and enter this command:

pip install matplotlib

e Toinstallmatplotlib on a Mac or Linux system,
open a Terminal window and enter this command:

sudo pip3 install matplotlib

* See Appendix F in your textbook for more
information about packages and the pip utility.

Plotting Data with matplotlib

* To verify the package was installed, start IDLE and

enter this command:

>>> import matplotlib

* If you don't see any error messages, you can assume

the package was properly installed.

For more information about the import statement, see Appendix E in your textbook.

Plotting Data with matplotlib

e The matplotlib package contains a module
named pyplot that you will need to import.

» Use the following import statement to import
the module and create an alias named p1t:

import matplotlib.pyplot as plt

Plotting a Line Graph with the plot
Function

Use the plot function to create a line graph that
connects a series of points with straight lines.

The line graph has a horizontal X axis, and a vertical
Y axis.

Each point in the graph is located at a (X,Y)
coordinate.

Plotting a Line Graph with the plot

Function

Program 7-19 (line_graph1.py)

1 |# This program displays a simple line graph.

import matplotlib.pyplot as plt

def main () :

Call the main function.
main ()

Create lists with the X and Y coordinates of each data point.
x coords = [0, 1, 2, 3, 4]
y _coords = [0, 3, 1, 5, 2]

Build the line graph. ‘ /
plt.plot (x coords, y coords) . /

Display the line graph. . /
plt.show () /

Plotting a Line Graph with the plot
Function

You can change the lower and upper limits of the X
and Y axes by calling the x1im and ylim functions.
Example:

plt.xlim(xmin=1, xmax=100)
plt.ylim(ymin=10, ymax=50)

* This code does the following:

» Causes the X axis to begin at 1 and end at 100
+ Causes the Y axis to begin at 10 and end at 50

Plotting a Line Graph with the plot
Function

¢ You can customize each tick mark's label with the
xticks and yticks functions.
o These functions each take two lists as arguments.
» The first argument is a list of tick mark locations

» The second argument is a list of labels to display at the
specified locations.

plt.xticks ([0, 1, 2, 3, 41,
'2016', '2017', '2018', '2019', '2020'])
o, 1, 2, 3, 4, 51,

|$Oml, lslmll lszmll I$3mI’ '$4m', l$5mlJ)

[
[
plt.yticks ([
[

Program 7-24

This program displays a simple line graph.
import matplotlib.pyplot as plt

def main():
Create lists with the X,Y coordinates of each data point.
x coords = [0, 1, 2, 3, 4]
y_coords [0, 3, 1, 5, 2]

Build the line graph.
plt.plot (x coords, y coords, marker='o')

Add a title.
plt.title('Sales by Year')

Add labels to the axes.
plt.xlabel ('Year')
plt.ylabel ('Sales"')

Continued...

Program 7-24 (continued)

19 # Customize the tick marks.
20 plt.xticks ([0, 1, 2, 3, 4],

['2016', '2017', '2018', '2019', '2020'])
22 plt.yticks ([0, 1, 2, 3, 4, 51,

['$Om', '$1m', '$2m', '$3m', '$4m', 'S$5m'])

2F # Add a grid.

26 plt.grid(True)

27

28 # Display the line graph.

29 plt.show()

31 # Call the main function.
32 main ()

Output of Program 7-24

Displayed by the
title () function.

Displayed by the

yticks () function.
Sales by Year

$4m

$3m

Sales

; /’nm
Displayed by the
ylabel () function.
$1m

2016 2017 2018 2019 2020

Year
Displayed by the / \
xticks () function. Displayed by the

xlabel () function.

Plotting a Bar Chart

e Use the bar function in the

matplotlib.pyplot module to create a bar
chart.

The function needs two lists: one with the X
coordinates of each bar's left edge, and
another with the heights of each bar, along
the Y axis.

Plotting a Bar Chart

left edges = [0, 10, 20, 30, 40]
heights = [100, 200, 300, 400, 500]

plt.bar (left edges, heights)
plt.show ()

Plotting a Bar Chart

The default width of each bar in a bar graph is 0.8 along the X
axis.

You can change the bar width by passing a third argument to
the bar function.

left_edges = [0, 10, 20, 30, 40]
heights = [100, 200, 300, 400, 500]
bar_width = 5

plt.bar (left_edges, heights, bar_width)
plt.show()

Plotting a Bar Chart

e The bar function has a color parameter that you can
use to change the colors of the bars.

* The argument that you pass into this parameter is a
tuple containing a series of color codes.

Color Code Corresponding Color

b Blue
! Green
! Red
Cyan
Magenta
Yellow
Black
White

o e o P S N)

Plotting a Bar Chart

* Example of how to pass a tuple of color codes as a
keyword argument:

plt.bar (left edges, heights, color=('r', 'g', 'b', 'w', 'k'"))

* The colors of the bars in the resulting bar chart will

be as follows:

* The first bar will be red.
The second bar will be green.
The third bar will be blue.
The fourth bar will be white.
The fifth bar will be black.

Plotting a Bar Chart

* Use the x1abel and ylabel functions to add labels
to the X and Y axes.

» Use the xticks function to display custom tick mark
labels along the X axis

» Use the yticks function to display custom tick mark
labels along the Y axis.

Plotting a Pie Chart

¢ You use the pie function in the matplotlib.pyplot
module to create a pie chart.

* When you call the pie function, you pass a list of

values as an argument.
* The sum of the values will be used as the value of the whole.
« Each element in the list will become a slice in the pie chart.
* The size of a slice represents that element's value as a
percentage of the whole.

Plotting a Pie Chart

e Example
values = [20, 60, 80, 40]
plt.pie(values)
plt.show ()

Plotting a Pie Chart

e The pie function has a 1abels parameter that you
can use to display labels for the slices in the pie
chart.

* The argument that you pass into this parameter is a
list containing the desired labels, as strings.

Plotting a Pie Chart

* Example

sales = [100, 400, 300, 600]

slice labels = ['lst Qtr', '2nd Qtr', '3rd Qtr', '4th Qtr']
plt.pie(sales, labels=slice labels)

plt.title('Sales by Quarter')

plt.show()

Sales by Quarter

2nd Qtr

st Qtr

ath qtr

Plotting a Pie Chart

e The pie function automatically changes the color of

the slices, in the following order:
* blue, green, red, cyan, magenta, yellow, black, and white.

* You can specify a different set of colors, however, by
passing a tuple of color codes as an argument to the
pie function's colors parameter:

plt.pie(values, colors=('r', 'g', 'b', 'w', 'k'"))

¢ When this statement executes, the colors of the slices in the resulting
pie chart will be red, green, blue, white, and black.

Summary

* This chapter covered:
* Lists, including:
» Repetition and concatenation operators
* Indexing
Techniques for processing lists
Slicing and copying lists
List methods and built-in functions for lists
Two-dimensional lists
* Tuples, including:
* Immutability
« Difference from and advantages over lists
« Plotting charts and graphs with the matplotlib

Package

